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As this chapter offers all the necessary mathematical skills for the full mastery of all
further topics explained in this book, we strongly recommend it. To serve its purpose, the
successive paragraphs below refresh some required aspects of mathematical language as
used on the applied level.

1.1 Algebra

Real numbers
We typeset the set of:

. natural numbers (unsigned integers) as N including zero,

. integer numbers as Z including zero,

. rational numbers as Q including zero,

. real numbers (floats) as R including zero.

All the above make a chain of subsets: N⊂ Z⊂Q⊂ R.

To avoid possible confusion, we outline a brief glossary of mathematical terms. We recall
that using the correct mathematical terms reflects correct mathematical thinking. Putting
down ideas in the correct words is of major importance for profound insight.

Sets

. We recall writing all subsets in between braces, e.g. the empty set appears as {}.

. We define a singleton as any subset containing only one element, e.g. {5} ⊂ N, as
a subset of natural numbers.

. We define a pair as any subset containing just two elements, e.g. {115,−4} ⊂ Z,
as a subset of integers. In programming the boolean values true and false make up
a pair {true, f alse} called the boolean set which we typeset as B.

. We define Z− = {. . . ,−3,−2,−1} whenever we need negative integers only. We
express symbolically that −1234 is an element of Z− by typesetting −1234 ∈ Z−.

. We typeset the set minus operator to delete elements from a set by using a back-
slash, e.g. N\{0} reading all natural numbers except zero, Q\Z meaning all pure
rational numbers after all integer values left out and R \ {0,1} expressing all real
numbers apart from zero and one.
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Calculation basics

operation expression a b c

to add a+b = c term term sum

to subtract a−b = c term term difference

to multiply a ·b = c factor factor product

to divide a
b = c, b 6= 0 numerator divisor quotient

or denominator or fraction

to exponentiate ab = c base exponent power

to take the root b
√

a = c radicand index radical

return factorial n! = c n factorial

We define the factorial of a natural argument as the returned product of this argument
multiplied with all natural numbers from this number n down to 1. Put in symbols:

n! = n · (n−1) · (n−2) · . . . ·3 ·2 ·1 restricted to n ∈ N

Furthermore we define 1! = 1 and as well 0! = 1.

Examples:

2! = 2 ·1 = 2, 3! = 3 ·2 ·1 = 6, 4! = 4 ·3 ·2 ·1 = 24.

We write the opposite of a real number r as −r, defined by the sum r+(−r) = 0. We
typeset the reciprocal of a nonzero real number r as 1

r or r−1, defined by the product
r · r−1 = 1.

We define subtraction as equivalent to adding the opposite: a−b = a+(−b). We define
division as equivalent to multiplying with the reciprocal: a : b = a ·b−1.

When we mix operations we need to apply priority rules for them. There is a fixed priority
list ‘PEMDAS’ in performing mixed operations in R that can easily be memorised by
‘Please Excuse My Dear Aunt Sally’.

. First process all that is delimited in between Parentheses,

. then Exponentiate,

. then Multiply and Divide from left to right,

. finally Add and Subtract from left to right.
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Now we discuss the distributive law ruling
within R, which we define as threading a ‘su-
perior’ operation over an ‘inferior’ operation.
In conclusion, distributing requires two differ-
ent operations.

Hence we distribute exponentiating over multi-
plication as in (a ·b)3 = a3 ·b3. Likewise rules
multiplying over addition as in 3 · (a+b) =
3 ·a+3 ·b.

However we should never stumble on this
‘Staircase of Distributivity’ by going too fast:

(a+b)3 6= a3 +b3,

√
a+b 6=

√
a+
√

b,√
x2 + y2 6= x+ y.

Fractions
A fraction is what we call any rational number written as t

n given t,n ∈ Z and n 6= 0,
wherein t is called the numerator and n the denominator. We define the reciprocal of a

nonzero fraction t
n as 1

t
n
= n

t or as the power
(

t
n

)−1
. We define the opposite fraction as

− t
n = −t

n = t
−n . We summarise fractional arithmetic:

sum t
n +

a
b = t·b+n·a

n·b

difference t
n −

a
b = t·b−n·a

n·b

product t
n ·

a
b = t·a

n·b

division
t
n
a
b
= t

n ·
b
a

exponentiation
( t

n

)m
= tm

nm

singular fractions 1
0 =±∞ infinity (see page ??)
0
0 =? indeterminate

Powers
We define a power as any real number written as gm, wherein g is called its base and m
its exponent. The opposite of gm is simply−gm. The reciprocal of gm is 1

gm = g−m, given
g 6= 0.
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According to the exponent type we distinguish between:

g3 = g ·g ·g 3 ∈ N,

g−3 = 1
g3 = 1

g·g·g −3 ∈ Z,

g
1
3 = 3
√

g = w⇔ w3 = g 1
3 ∈Q,

g0 = 1 g 6= 0.

Whilst calculating powers we may have to:

multiply g3 ·g2 = g3+2 = g5,

divide g3

g2 = g3 ·g−2 = g3−2 = g1,

exponentiate
(
g3
)2

= g3·2 = g6 them.

We insist on avoiding typesetting radicals like 7
√

g3 and strongly recommend their con-
temporary notation using radicand g and exponent 3

7 , consequently exponentiating g to

g
3
7 . We recall the fact that all square roots are non-negative numbers,

√
a = a

1
2 ∈ R+ for

a ∈ R+.

As well as knowing the above exponent types, understanding the above rules to calcu-
late them is necessary for using powers successfully. We advise memorising the integer
squares running from 12 = 1, 22 = 4, . . ., up to 152 = 225, 162 = 256 and the integer cubes
running from 13 = 1, 23 = 8, . . ., up to 73 = 343, 83 = 512 in order to easily recognise
them.

Recall that the only way out of any power is exponentiating with its reciprocal exponent.
For this purpose we need to exponentiate both left hand side and right hand side of any
given relation (see also paragraph 1.2).

Example: Find x when 7√x3 = 5 by exponentiating this power.

x
3
7 = 5⇐⇒

(
x

3
7

) 7
3
= (5)

7
3 ⇐⇒ x≈ 42.7494.

We emphasise the above strategy as the only successful one to free base x from its expo-
nent, yielding its correct expression numerically approximated if we wish to.

Example: Find x when x2 = 5 by exponentiating this power.

x2 = 5⇐⇒
(
x2) 1

2 = (5)
1
2 or − (5)

1
2 ⇐⇒ x≈ 2.23607 or−2.23607.

We recall the above double solution whenever we free base x from an even exponent,
yielding their correct expression as accurately as we wish to.
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Mathematical expressions
Composed mathematical expressions can often seem intimidating or cause confusion.
To gain transparency in them, we firstly recall indexed variables which we define as
subscripted to count them: x1,x2,x3,x4, . . . ,x99999,x100000, . . ., and α0,α1,α2,α3,α4, . . . .
It is common practice in industrial research to use thousands of variables, so just picking
unindexed characters would be insufficient. Taking our own alphabet as an example, it
would only provide us with 26 characters.

We define finite expressions as composed of (math-
ematical) operations on objects (numbers, variables
or structures). We can for instance analyse the ex-
pression (3a+ x)4 by drawing its tree form. This
example reveals a Power having exponent 4 and a
subexpression in its base. The base itself yields a
sum of the variable x Plus another subexpression.
This final subexpression shows the product 3 Times
a.

Let us also evaluate this expression (3a+ x)4. Say
a = 1, then we see our expression partly collapse
to (3+ x)4. If, on top of this, we assign x = 2, our
expression then finally turns to the numerical value
(3+2)4 = 54 = 625.

When we expand this power to its pure sum expression 81a4 + 108a3x + 54a2x2 +

12ax3 + x4, we did nothing but reshape its pure product expression (3a+ x)4.

We warn that trying to solve this expression – which is not a relation – is completely in
vain. Recall that inequalities, equations and systems of equations or inequalities are the
only objects in the universe we can (try to) solve mathematically.

Relational operators
We also refresh the use of correct terms for inequalities and equations.

We define an inequality as any variable expression comparing a left hand side to a right
hand side by applying the ‘is-(strictly)-less-than’ or by applying the ‘is-(strictly)-greater-
than’ operator. For example, we can read (3a+ x)4 6 (b+4)(x+3) containing variables
a, x, b. Consequently we may solve such inequality for any of the unknown quantities a,x
or b.

We define an equation as any variable expression comparing a left hand side to a right
hand side by applying the ‘is-equal-to’ operator. For example (3a+ x)4 = (b+4)(x+3)
is an equation containing variables a, x, b. Consequently we also may solve equations for
any of the unknown quantities a,x or b.
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We define an equality as a constant relational expression being true, e.g. 7= 7. We define
a contradiction as a constant relational expression being false, e.g. −10 > 5.

Real polynomials

We elaborate upon the mathematical environment of polynomials over the real numbers
in their variable or indeterminate x, a set we denote with R[x].

. Monomials

We define a monomial in x as any product axn, given a ∈ R and n ∈ N. We can
extend this concept to several indeterminates x,y,z, . . . like the monomials 3(xy)6

and 3(x2y3z6) are.

We define the degree of a monomial axn as its natural exponent n ∈ N to the inde-
terminate part x. We say constant numbers are monomials of degree 0 and linear
terms are monomials of degree 1. We say squares have degree 2 and cubes have
degree 3, followed by monomials of higher degree.

For instance, the real monomial −
√

12x6 is of degree 6. Extending this concept,
the monomial 3(xy)6 is of degree 6 in xy and the monomial 3(x2y3z6)9 is of degree
9 in x2y3z6.

We define monomials of the same kind as those having an identical indeterminate
part. For instance, both 5

7 x6 and −
√

12x6 are of the same kind. Extending the
concept, likewise 5

7 x3y5z2 and −
√

12x3y5z2 are of the same kind.

All basic operations on monomials emerge simply from applying the calculation
rules of fractions and powers.

. Polynomials

We define a polynomial V (x) as any sum of monomials. We define the degree of
V (x) as the maximal exponent m ∈ N to the indeterminate variable x. For instance,
the real polynomial

V (x) = 17x2 +
1
4

x3 +6x−7x2−
√

12x6−13x−1,

is of degree 6.

Whenever monomials of the same kind appear in it, we can simplify the polynomial.
For instance, our polynomial simplifies to V (x) = 10x2 + 1

4 x3−7x−
√

12x6−1.

Moreover, we can sort any given polynomial either in an ascending or descending
order according to its powers in x. Sorting our polynomial V (x) in an ascending
order yields V (x) = −1−7x+10x2 + 1

4 x3−
√

12x6. Sorting V (x) in a descending
order yields V (x) =−

√
12x6 + 1

4 x3 +10x2−7x−1.
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Eventually we are able to evaluate any polynomial, getting a numerical value from
it. For instance evaluating V (x) in x=−1, yields V (−1)=−

√
12(−1)6+ 1

4 (−1)3+

10(−1)2−7(−1)−1 =−
√

12− 1
4 +16 = 63

4 −2
√

3 ∈ R.

. Basic operations

Adding two monomials of the same kind: we add their coefficients and keep their
indeterminate part

5a2−3a2 = (5−3)a2 = 2a2.

Multiplying two monomials of any kind: we multiply both their coefficients and
their indeterminate parts

−5ab · 7
4

a2b3 =−5 · 7
4
·a1+2b1+3 =

−35
4

a3b4.

Dividing two monomials: we divide both their coefficients and their indeterminate
parts

−8a6b4

−4a4 =
−8
−4

a6−4b4−0 = 2a2b4.

Exponentiating a monomial: we exponentiate each and every factor in the mono-
mial (

−2a2b4)3
= (−2)3(a2)3(b4)3 =−8a6b12.

Adding or subtracting polynomials: we add or subtract all monomials of the same
kind

(x2−4x+8)− (2x2−3x−1) = x2−4x+8−2x2 +3x+1 =−x2− x+9.

Multiplying two polynomials: we multiply each monomial of the first polynomial
with each monomial of the second polynomial and simplify all those products to
the resulting product polynomial

(2x2 +3y) · (4x2− y) = 2x2(4x2− y)+3y(4x2− y)

= 2x2 ·4x2 +2x2 · (−y)+3y ·4x2

+3y · (−y)

= 8x4− 2x2y + 12x2y −3y2

= 8x4 +10x2y−3y2.
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1.2 Equations in one variable

In anticipation of this section, we will refresh the required vocabulary. A solution is any
value assigned to the variable that turns the given equation into an equality (being true).
The scope of an equation is any number set in which the equation resides, realising it will
most likely be R. We define the solution set as the set containing all legal solutions to an
equation. This solution set is always a subset of the scope of the equation.

Linear equat ions

A linear equation is an algebraic equation of degree one, referring to the maximum
natural exponent of the unknown quantity. By simplifying we can always standardise any
linear equation to

ax+b = 0, (1.1)

given a∈R\{0} and b∈R. We cite 3x+7= 22,5x−9d = c and 5(x−4)+x=−2(x+2)
as examples of linear equations, and 3x2 +7 = 22 and 5ab−9b = c as counter examples.
The adjective ‘linear’ originates from the Latin word ‘linea’ meaning (straight) line as
referring to the graph of a linear function (see chapter ??).

We solve a linear equation for its unknown part by rewriting the entire equation until its
shape exposes the solution explicitly.

We recall easily the required rules for rewriting a
linear equation by the metaphor denoting a linear
equation as a ‘pair of scales’. This way we should
neverforget tokeeptheequation’sbalance: whatever
operation we apply, it has to act on both sides of the
equals-sign. If we add to (or subtract from) the left
hand ‘scale’ than we are obliged to add the same
term to (or subtract it from) the right hand ‘scale’. If
we multiply (or divide) the left hand side, than we
are likewise obliged to multiply (or divide) the right hand side with the same factor. If not,
our equation would lose its balance just like a pair of scales would. We realise that our
metaphor covers all usual ‘rules’ to handle linear equations.

The reason we perform certain rewrite steps depends on which variable we are aiming for.
This is called strategy. Solving the equation for a different variable implies a different
sequence of rewrite steps.
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Example: We solve the equation 5(x− 4)+ x = −2(x+ 2) for x. Firstly, we apply the
distributive law: 5x− 20+ x = −2x− 4. Secondly, we put all terms dependent of x to
the left hand side and the constant numbers to the right hand side 5x+ x+2x =−4+20.
Thirdly, we simplify both sides 8x = 16. Finally, we find x = 2 leading to the solution
singleton {2}.

Quadrat ic equat ions

Handling quadratic expressions and solving quadratic equations are useful basics in order
to study topics in multimedia, digital art and technology.

. Expanding products

We refresh expanding a product as (repeatedly) applying the distributive law until
the initial expression ends up as a pure sum of terms. Note that our given polyno-
mial V (x) itself does not change: we just shift its appearance to a pure sum. We
illustrate this concept through V (x) = (2x−3)(4− x).

(2x−3)(4− x) = (2x−3) ·4+(2x−3) · (−x)

= (8x−12)+(−2x2 +3x)

=−2x2 +11x?12.

Other examples are

5a(2a2−3b) = 5a ·2a2−5a ·3b = 10a3−15ab

and

4
(

x− 1
2

)(
x+

13
2

)
= (4x−2)

(
x+

13
2

)
= (4x−2) · x+(4x−2) · 13

2
= 4x2−2x+26x−13 = 4x2 +24x−13.

. Factoring polynomials

We define factoring a polynomial as decomposing it into a pure product of (as
many as possible) factors. Note that our given polynomial V (x) itself does not
change: we just shift its appearance to a pure product. Our trinomial V (x) =
−2x2+11x−12 just shifts its appearance to the pure product V (x)= (2x−3)(4−x)
when factored. It merely shows that the product (2x−3)(4−x) is a factorisation of
the trinomial −2x2 +11x−12.
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Imagine we had to factor the trinomial−2x2+11x−12 without any hint. This way
we realise that factoring generally is a hard job to do. Especially because we do
not have any clue about which factors build up the pure product for a polynomial.
Many questions arise: how many factors to expect, where to start from, what is the
opening step towards factorisation?

We observe the need for at least a minimum asset of factoring methods. As an extra
motivation, we emphasise the importance of factoring as it reveals all essential
building blocks of any polynomial. Knowing the roots of a polynomial gives us a
deeper insight. We therefore introduce some factoring basics in the next paragraphs.

Common Factor
We show how to separate common factors if they appear.

For instance 6+12x = 6 ·1+6 · (2x) = 6 · (1+2x) results in a pure product of a number
and a linear factor by separating the common factor 6. Another polynomial like 5x+x2 =

5x+ xx = (5+ x) · x separates into two linear factors by the use of the common factor
x. An example expression like 39x+ 3xy = 3 · 13x+ 3xy = 3 · x · (13+ y) yields a pure
product of a number factor, a linear factor in x and a linear factor in y by separating the
common factors 3 and x. Occasionally we may have to factor by grouping. For instance

1+ x+ x2 + x3 = (1+ x)+(x2 + x3) = (1+ x)+(x2 ·1+ x2 · x)
= (1+ x)+ x2(1+ x) = 1 · (1+ x)+ x2(1+ x)

= (1+ x2) · (1+ x)

results stepwise into a pure product of a quadratic and a linear factor in x.

Perfect powers
Expanding the natural powers of the binomial A+B reveals their corresponding pure sum
shapes.

(A+B)2 = (A+B) (A+B) = A2 +2AB+B2

(A+B)3 = (A+B)2(A+B) = A3 +3A2B+3AB2 +B3

(A+B)4 = (A+B)3(A+B) = A4 +4A3B+6A2B2 +4AB3 +B4

We define a perfect power as any natural exponentiation of a binomial. The important
power is (A+B)2 which we define as the perfect square of its binomial A+B.
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Those perfect powers of A+B, when ordered to ascending natural exponents, display
Pascal’s Triangle for all n ∈ N.

1

1A+1B

1A2 +2AB+1B2

1A3 +3A2B+3AB2 +1B3

1A4 +4A3B+6A2B2 +4AB3 +1B4

1A5 +5A4B+10A3B2 +10A2B3 +5AB4 +1B5

...

Notice how a coefficient is produced as a sum of its upper two, leading to a symmetric
triangle of numbers with the constant ‘1’ on both edges. This ‘triangle’ is named after its
explorer Blaise Pascal (1623 –1662).

Despite the diminishing need for perfect power formulas in this century of ruling com-
puting power, we do advise you to know at least the perfect square by heart.

To put the perfect square into words: ‘The square of a binomial equals the sum of both
squares plus two times the product’.

(A+B)2 = A2 +2AB+B2. (1.2)

A

A

B

B

We provide a visual aid to help you memorise it.
The area of the total square equals (A+B) ·(A+B).
Alternatively we puzzle this area piece by piece,
via adding both white square areas A2 and B2 plus
the two grey rectangular areas AB, jointly equalling
the perfect square as the trinomial A2 +B2 +2AB.

Consequently we now can explore a new factoring
method. For instance, we intend to factor the trino-
mial 1− 2x+ x2, whilst we have no guarantee for
its pure product shape to even exist.

Strategically we perform two subsequent checks.

1) Verify whether both squares carry the same sign.

2) Then find 2AB corresponding correctly to the given A and B.

Only when both checks hold, are we able to shift the given trinomial to its perfect product
(A+B)2. We give an example of this strategy to the trionomial 1−2x+ x2.
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We rewrite the trinomial to +(−1)2− 2x+ (x)2 by assigning A = −1 and B = x. By
substituting A and B into 2AB , we find +(−1)2+2(−1)(x)+(x)2 equalling our trinomial.
Therefore we confirm A =−1 and B = x, which allows the shift 1−2x+x2 = (−1+ x)2.
We realise that alternatively (+1− x)2 is a correct factorisation as well.

Perfect quotient
(A+B)(A−B) = A2−B2 (1.3)

. Quadratic formula for quadratic equations

A quadratic equation is an algebraic equation of degree two in the unknown quan-
tity x that can be reduced to the default shape

ax2 +bx+ c = 0 (1.4)

given a ∈ R\{0} and b,c ∈ R.

To solve this equation for x we firstly divide both sides of it by a . Dividing by a is
valid since a 6= 0. In case of a = 0 we would no longer have a quadratic but a linear
equation.

ax2 +bx+ c = 0⇐⇒ x2 +
b
a

x+
c
a
= 0

Secondly, we aim for a perfect square by adding and subtracting the special term(
b
2a

)2
which is again valid since this is equivalent to adding 0. This way we have

created a perfect square (A+B)2, assigning A = x and B = b
2a .

x2 +2
( b

2a

)
x +
( b

2a

)2
−
( b

2a

)2
+

c
a
= 0

⇐⇒

(
x2 +2

( b
2a

)
x +
( b

2a

)2
)
−
( b

2a

)2
+

c
a
= 0

⇐⇒
(

x+
b

2a

)2
−
( b

2a

)2
+

c
a
= 0

⇐⇒
(

x+
b

2a

)2
=
( b

2a

)2
− c

a

The left hand side of this equation is now a square. Before proceeding we make
sure that all denominators of the right hand side are equal.(

x+
b

2a

)2
=

b2

4a2 −
c ·4a
a ·4a

⇐⇒
(

x+
b

2a

)2
=

b2−4ac
4a2
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Arithmetically this holds: L2 = R⇔ L =
√

R or L = −
√

R. Hence we reach two
similar solutions to our equation:

x+
b

2a
=

√
b2−4ac

4a2 or x+
b

2a
=−

√
b2−4ac

4a2

⇓

x+
b

2a
=

√
b2−4ac

2a
or x+

b
2a

=−
√

b2−4ac
2a

⇓

x =− b
2a

+

√
b2−4ac

2a
or x =− b

2a
−
√

b2−4ac
2a

The discriminant of a quadratic equation ax2 +bx+ c = 0, given a 6= 0, is the real
number to be calculated as

D = b2−4ac. (1.5)

Furthermore, we solve ax2 +bx+ c = 0 for x like this:

if D < 0 then there are no solutions in R,

if D = 0 we find one real root x1 =
−b
2a ,

if D > 0 we have two similar roots

x1 =
−b+

√
D

2a
and x2 =

−b−
√

D
2a

. (1.6)

As a spin-off these roots enable factoring the default left hand side as

ax2 +bx+ c = a(x− x1)(x− x2) when D > 0 (1.7)

and as
ax2 +bx+ c = a(x− x1)

2 when D = 0.

Examples: Solving the quadratic equation −2x2 + 11x− 12 = 0 for x, we firstly
calculate its discriminant D= 112−4 ·(−2) ·(−12)= 25 to subsequently determine
its roots as x1 = −11+

√
25

2·(−2) = 3
2 and x2 = −11−

√
25

2·(−2) = 4. As a bonus, this allows

us to factor −2x2 + 11x− 12 as (−2)
(
x− 3

2

)
(x−4). The solution set is the pair

{ 3
2 ,4} ⊂ R.

We solve 25x2−60x+36 = 0 for x as a next example. In this case the discriminant
equals zero, yielding a unique root of multiplicity 2 to be found as x = −(−60)±

√
0

2·25 =
6
5 and thus leading to the solution singleton { 6

5} ⊂ R.

Finally solving also 25x2 +49x+36 = 0 for x, we calculate its discriminant as D =

−1199. It is not possible for us to find any real root due to the fact
√
−1199 /∈ R,

which in this case leads to an empty solution set {} ⊂ R.
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Equations of higher degree
Solving the polynomial quadratic equation ax2+bx+c= 0 for x by means of the Quadratic
Formula

−b±
√

D
2a

dates back to Babylonian and Greek times. The next big leap forward for solving equa-
tions of higher degree had to wait until the 16th century, till the time of the Renaissance.

. Cubic equations

Geronimo Cardano (1501–1576) published a similar Cubic Formula for solving
polynomial equations of degree three. Despite Cardano publishing it, the Cubic
Formula was actually discovered by another Italian. Historians claim that this for-
mula was discovered by the mathematician Niccolo Fontana (1499 –1557) (nick-
named Tartaglia or ‘stutterer’).

. Quartic equations

Shortly after the former formula, Lodovico Ferrari (1522 – 1565) a pupil of Car-
dano, and also an Italian mathematician, found the Quartic formula to solve poly-
nomial equations of degree four.

. Quintic equations

For an apotheosis one needed to wait until the 19th century in France: the very
young and brilliant mathematician Evariste Galois (1811–1832) proved the im-
possibility of finding a similar Quintic Formula for polynomial equations of larger
than degree four. Meanwhile, as a workaround (from, among others, Isaac Newton,
around 1676) we can solve any polynomial equation numerically, yielding approx-
imations for its solutions. Apart from this modern numerical approach, special
subtypes of polynomial equations of larger degree can also still be solved exactly
by means of formulas of radical expressions.

1.3 Logarithms

. We define the common or Briggsian logarithm as an exponent to base 10,

log10 (a) = x⇔ 10x = a

which satisfies the existence condition a ∈ R+\{0} with base 10 ∈ R+\{0,1} .
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Examples:

log10 (100) = 2

log10 (1000) = 3

log10 (100000) = 5

The decimal logarithm is an idea of the Englishman Henry Briggs (1561–1630),
contemporary of the Scotsman John Napier (1550 – 1617). Around 1615, both
mathematicians agreed that the logarithm base number 10 would offer the better fu-
ture perspective. Among others, the famous scientist Simon Stevin (1548 – 1620)
from Bruges, in Belgium, contributed a lot in establishing decimal numbers world-
wide, in line with base number 10. In 1624, Briggs published the very first decimal
logarithm table in his book ‘Arithmetica Logaritmica’.

Back in 1618, Napier published (unknowingly) the natural base, which was later
re-discovered as the transcendental limit value

2.718281828459 . . . (1.8)

by the Swiss Jakob Bernoulli (1654 –1705) and – similarly to the transcendental
number π ≈ 3.14 for circles – by the next Swiss genius Leonhard Euler (1707–
1783) named Euler’s number, simply called by the symbol e≈ 2.72.

. We define the natural logarithm or Napier’s logarithm as an exponent to base
e≈ 2.72,

loge (a) = x⇔ ex = a

which satisfies the existence condition a ∈ R+\{0} with base e ∈ R+\{0,1} .

Examples:

loge
(
e1) = 1

loge
(
e2) = 2

loge(e
5) = 5

John Napier conceived of the natural logarithm around 1594. After decades of
calculation, he finally published the first natural logarithm table in his book ’Mirifici
Logarithmorum Canonis Descriptio’ in 1614. New mathematical ideas acquire a
common status proportional to their ease of use, but Napier’s first design based on
1
e ≈ 0.368 was seemingly less practical. In general, Napier contributed substantially
to the popularity and adoption of decimal numbers and the decimal logarithm.
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. We define the binary logarithm as an exponent to base 2,

log2 (a) = x⇔ 2x = a

which satisfies the existence condition a ∈ R+\{0} with base 2 ∈ R+\{0,1} .

Examples:

log2 (4) = 2

log2 (8) = 3

log2 (32) = 5

log2 (1024) = 10

This binary logarithm is especially applicable in data communication and other
binary environments.
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Real numbers are stored identically into the computer. From the irrational numbers such
as π to giant integers such as 1010, radicals and negative fractions, they all fit into the
machine in the same way. Let us also add −1 billion to our example list.

A.1 Scientific notation
The storage of real numbers into computers is based on their scientific notation which
separates the sign and the precision from the order of magnitude of each exact number x,
arranged into the product

x = (−1)s×N10×10E10 .

The first factor (−1)s shows the sign of x, the second factor N10 is the decimal normalised
significand lying between 1 and 10 and finally the exponent E10 indicates the decimal
order of magnitude of x.

exact value x decimally displayed decimally scientifically displayed

1
10 0.1 +1.×10−1

π 3.141592653 . . . +3.141592653 . . .×100

0.00001234 0.00001234 +1.234×10−5

−1 billion −1000000000. −1.000000000×109

This normalised scientific notation allows us to simulate the storage of our real examples
into a decimal machine which allocates a standardised digit sequence for each of them.

A.2 The decimal computer
Let us straightforwardly consider a decimal computer which stores one digit denoting the
sign, one digit indicating the order of magnitude and stores four significant digits of the
original value x.
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scientific notation uniform machine precision stored machine number x′

+1. ×10−1 (−1)0×1. ×10−1 (−1)0×1.000×10−1

+3.141592653 . . .×100 (−1)0×3.142×100 (−1)0×3.142×100

+1.234 ×10−5 (−1)0×1.234×10−5 (−1)0×1.234×10−5

−1.000000000 ×109 (−1)1×1.000×109 (−1)1×1.000×109

Our simplified decimal computer stores exact values x ∈ R systematically in a fixed digit
sequence x′ containing the sign (1 digit), the exponent (1 digit) and the normalised sig-
nificand (4 digits). This computer is limited to storing only four significant digits and
consequently standardises its stored numbers x′ with fixed machine precision. We call
the finite subset of real numbers x′ which are inevitably rounded to fit into the computer,
machine numbers. The accompanying figure shows all positive machine numbers, from
the smallest to the largest one in R+ in case of 8-bit (which means 2-decimal digit) num-
bers.

Figure A.1: The subset of (fictitious) 8-bit machine numbers x′ in R+

A.3 Special values
Calculations which result in numbers smaller than the smallest machine number, suffer
real underflow. Arithmetical outputs which are larger than the largest machine number
feature real overflow. For instance, storing the real number zero is an issue, since it would
require the exponent E10 = −∞. To be able to store the number zero, and similarly the
infinities requiring exponent E10 = +∞ and the indeterminate such as 0

0 in our decimal
machine, we predefine these exceptions respectively as NULL, INFINITY and NAN
abbreviating ‘Not A Number’.
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B.1 Alphabets

Latin alphabet

meaning symbol

constants and coefficients a,b,c, . . .
unknown quantities and variables x,y,z, . . .
points P,Q,R, . . .
lines r,s, t, . . .
planes vR,vP, . . .

vectors ~v,~w, . . .
unit vectors v̂, ŵ, . . .
matrices A,B,C, . . .

angles Â, B̂,Ĉ, . . .

(angles alternatively in Greek) α,β ,θ , . . .

Bezier segment ~b012...n

B-spline ~s012...n

translations T~c
standard rotations RO

standard scalings SO

composite action transformations A
pivot transformation PB

conventional composite transformations T RS
(nonconventional) orbit transformation OB

embedding transformation Ei

camera transformation F~c
view transformation V~c
quaternions q, p, . . .
normalized quaternions qn, pn, . . .

unit quaternions u
rotation quaternions u, r, . . .
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Greek alphabet

Traditionally, we use Greek characters to denote angles (especially in trigonometry). We
also choose Greek characters for typesetting mathematical and physical constants.

name Greek character name Greek character

alpha α nu ν

beta β xi ξ

gamma γ omicron o
delta δ , ∆ pi π

epsilon ε rho ρ

zeta ζ sigma σ

eta η tau τ

theta θ upsilon υ

iota ι phi φ , Φ

kappa κ chi χ

lambda λ psi ψ

mu µ omega ω

B.2 Mathematical symbols

Sets

number sets including zero symbol

natural numbers (unsigned integers) N
integer numbers (integers) Z
rational numbers or fractions Q
real numbers (floating points) R
complex numbers C
hypercomplex numbers or quaternions H

We embed these number sets as

N⊂ Z⊂Q⊂ R⊂ C⊂H.



NOTATIONS AND CONVENTIONS 31

Mathematical symbols

name symbol

empty set {}
set minus \
element of ∈
cardinality (number of elements) #
factorial !
equal to =

equivalent with ⇔
implies ⇒
distance d
difference ∆

degrees ◦

infinity (unbound large value) ∞

summation Σ

dot product ·
cross product ×
transpose T

conjugate ∗

imaginary unities i, j,k
cartesian coordinates ( )cc

polar coordinates ( )pc

tiny error ε
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Mathematical keywords

name symbol

logarithm in base b logb
exponential in base e exp
radian rad
sine sin
cosine cos
tangent tan
cotangent cot
arcsine arcsin
arccosine arccos
arctangent arctan
extended arctangent atan2
determinant det
absolute value abs

Numbers

name symbol, (rounded) value

pi π ≈ 3.1416

radian 1 rad≈ 57.30◦

silver number δ = 1+
√

2≈ 2.4142

golden number Φ = 1+
√

5
2 ≈ 1.6180

paired golden number Φ′ = 1−
√

5
2 ≈−0.6180

imaginary unities (quaternions) i2 = j2 = k2 =−1 and i j = k

natural base e≈ 2.7183

acceleration due to gravity (average) g≈ 9.8067
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C.1 SI Prefixes

We may use the international default prefixes to specify decimal orders of magnitude.

name symbol factor

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24

Examples:

12 km = 12×103 m = 12 000 m

34 mm = 34×10−3 m = 0.034 m
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In our modern world, we quantify measures standardised by the SI (the International Sys-
tem of Units). Nature’s base measures length l, mass m and time t are measured in metres
m, kilograms kg and seconds s respectively. We may typeset units by putting square
brackets around their corresponding measures.

C.2 SI Base measures

We mainly use just these three base measures throughout this book; for the few remaining
base measures we refer you to the physics literature.

measure symbol SI-unit

length l [l] = m metre

mass m [m] = kg kilogram

time t [t] = s second

C.3 SI Supplementary measure

Unlike the real physics units, expressing plane angles in radian is typeset by the supple-
mentary measure or mathematical tag ‘rad’.

measure symbol SI-unit

plane angle α [α] = rad radian
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C.4 SI Derived measures

Derived measures are composed of the above measures. We mainly use the following de-
rived measures throughout this book; for the remaining ones with special names we refer
you to the physics literature.

measure symbol SI-unit

width b [b] = m metre

height h [h] = m metre

radius r [r] = m metre

diameter d [d] = m metre

distance d [d] = m metre

norm of a location vector ‖~s‖ [‖~s‖] = m metre

area area [area] = m2 square metre

volume volume [volume] = m3 cubic metre

speed v [v] = m
s metre per second

magnitude of acceleration a [a] = m
s2 metre per second squared

acceleration due to gravity g [g] = m
s2 metre per second squared

frequency f [ f ] = s−1 Hertz

angular location θ [θ ] = rad radian

angular speed ω [ω] = rad
s radians per second

angular acceleration α [α] = rad
s2 radians per second squared
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Real numbers are stored identically into the computer. From the irrational numbers such
as π to giant integers such as 1010, radicals and negative fractions, they all fit into the
machine in the same way. Let us also add −1 billion to our example list.

D.1 Scientific notation
The storage of real numbers into computers is based on their scientific notation which
separates the sign and the precision from the order of magnitude of each exact number x,
arranged into the product

x = (−1)s×N10×10E10 .

The first factor (−1)s shows the sign of x, the second factor N10 is the decimal normalised
significand lying between 1 and 10 and finally the exponent E10 indicates the decimal
order of magnitude of x.

exact value x decimally displayed decimally scientifically displayed

1
10 0.1 +1.×10−1

π 3.141592653 . . . +3.141592653 . . .×100

0.00001234 0.00001234 +1.234×10−5

−1 billion −1000000000. −1.000000000×109

This normalised scientific notation allows us to simulate the storage of our real examples
into a decimal machine which allocates a standardised digit sequence for each of them.

D.2 The decimal computer
Let us straightforwardly consider a decimal computer which stores one digit denoting the
sign, one digit indicating the order of magnitude and stores four significant digits of the
original value x.



38 ANIMATION MATHS

scientific notation uniform machine precision stored machine number x′

+1. ×10−1 (−1)0×1. ×10−1 (−1)0×1.000×10−1

+3.141592653 . . .×100 (−1)0×3.142×100 (−1)0×3.142×100

+1.234 ×10−5 (−1)0×1.234×10−5 (−1)0×1.234×10−5

−1.000000000 ×109 (−1)1×1.000×109 (−1)1×1.000×109

Our simplified decimal computer stores exact values x ∈ R systematically in a fixed digit
sequence x′ containing the sign (1 digit), the exponent (1 digit) and the normalised sig-
nificand (4 digits). This computer is limited to storing only four significant digits and
consequently standardises its stored numbers x′ with fixed machine precision. We call
the finite subset of real numbers x′ which are inevitably rounded to fit into the computer,
machine numbers. The accompanying figure shows all positive machine numbers, from
the smallest to the largest one in R+ in case of 8-bit (which means 2-decimal digit) num-
bers.

Figure D.1: The subset of (fictitious) 8-bit machine numbers x′ in R+

D.3 Special values
Calculations which result in numbers smaller than the smallest machine number, suffer
real underflow. Arithmetical outputs which are larger than the largest machine number
feature real overflow. For instance, storing the real number zero is an issue, since it would
require the exponent E10 = −∞. To be able to store the number zero, and similarly the
infinities requiring exponent E10 = +∞ and the indeterminate such as 0

0 in our decimal
machine, we predefine these exceptions respectively as NULL, INFINITY and NAN
abbreviating ‘Not A Number’.
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1. Arithmetic Refresher

Exercise 1

1) a10 5) a7

2) 2a5 6) a6

3) 0 7) a8

4) a15 8) 1
4 a6

Exercise 2

1) −a−b 6) a2+n+m

2) a+b
−c en −a−b

c 7) −8a6b9

3) 4c+3d
4d 8) c4d2

4) 3c
4d 9) b2

a10

5) −7 10) a9

Exercise 3

1) −6

2) 26
5

Exercise 4

The odd numbers are 45, 47 and 49.

Exercise 5

1) a−12 6) 16a12b8

2) 1
a 7) b50

3) a−20 8) a23

4) a6

b9 9) −16a6b

5) b8 10) 144a10b20

Exercise 6

1) 0 4) −x12y6 7) 3x2−6x−3

2) −16x4y4 5) −x24y6 8) −8x3 +38x2 +6x

3) −1 6) 0 9) 14x2−21x+8
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Exercise 7

1) δ = −5
6 en δ = 0 4) x =−1 en x = −1

4

2) x = −5
2 en x = 5

2 5) t =−2

3) t = −3
2 en t = 2 6) t =−3 en t = 2

Exercise 8 V (x,y) =−3(a+7b)(x−2y)

Exercise 9 K(x) = 9
(
x− 1

3

)2

Exercise 10

1) 0 3) 2 5) − 3
2

2) 4 4) 4
3 6) −4

2. Linear Systems

Exercise 11
x = 1
y = 0
z = 1
v = 2

Exercise 12 x1 = 13
2

x2 = −3
4

x3 =−1

Exercise 13 3 m by 1 m.

Exercise 14 123 and 87

Exercise 15 The father is 35 year and his son makes 11 year.

Exercise 16 Adison scores 260 points and Valence 210.

Exercise 17 In 2 hours 7 minutes 30 seconds the fastest robot produces 16 250
motherboards, while the slowest reaches 12 750.

Exercise 18 11 components of type I, 13 components of type II and 21 components
of type III.
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Exercise 19 The circumference is 60 cm.

Exercise 20 The length of the arm measures 41.41m.

Exercise 21 The aeroplane flies at a speed of 583.33 kms per hour and the wind-
speed is 83.33 kms per hour.

Exercise 22 The price of one beer is 1.5 EUR.

Exercise 23 The parcel’s dimensions are 3 cm by 4.5 cm by 2.5 cm.

3. Trigonometry

Exercise 24

1) β = 42◦

a = 29tan48◦ ≈ 32.21
c =

√
292 +(29tan48◦)2 ≈ 43.34

2) b =
√

102 +122−2 ·12 ·10 · cos65◦ ≈ 11.94
γ = arcsin 12sin65◦

b ≈ 65.62◦

α = 180◦−65◦− γ ≈ 49.38

Exercise 25 α = arctan 8
20 − arctan 5

20 ≈ 7.77◦

Exercise 26 158.11m

Exercise 27 700 sin78◦
sin69◦ ≈ 733.42 km

Exercise 28 250
sin23◦ (sin80◦+ sin77◦)≈ 1253.53 km

Exercise 29 45
√

3 metres

Exercise 30

1) α = 60◦ en α = 120◦ 3) α = 67,5◦ en α = 112,5◦

2) α = 45◦ en α = 225◦ 4) α = 240◦ en α = 240◦

Exercise 31

1) x = 8.82 m, and y = 11.46 m

2) h = 13.19 m
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4. Functions

Exercise 32

Setting the first slope m = tanα indicates the second slope as n = tan(α − π

2 ).
Therefore we deduct trigonometrically n=− tan(π

2 −α)=−cotα =− 1
tanα

=− 1
m .

Exercise 33

1) a > 0,b > 0 and c < 0 3) a > 0,b > 0 and c > 0
2) a < 0,b < 0 and c < 0 4) a < 0,b > 0 and c > 0

Exercise 34 y = 2
3 x+20 and y = −3

2 x+85

Exercise 35 The car collides in the point (1,1).

Exercise 36 (−1,−36) and (4,24)

Exercise 37

. Inverting y = loge(x) by solving x = loge(y) for y yields y = ex = exp(x).

. The graphs lie symmetric about the main diagonal y = x in their orthonormal
(x,y)−plot frame.

log(x)

x

exp(x)

-4 -2 2 4

-4

-2

2

4



44 ANIMATION MATHS

Exercise 38

. Composite function f (x) = loge(exp(x)) has domain R, range R and single
root x = 0.

. Composite function f (x) = exp(loge(x)) has domain R+, range R+\{0} and
no roots.

Exercise 39
One sheet of newspaper thickness is 0.08 mm.
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Exercise 40

1) 2sin
(
x− π

2

)
+3

2) 0.5sin
(
2
(
x− π

2

))
−1

Exercise 41
Approximatively

1
9!
≈ 3×10−6

5. The Golden Section

Exercise 42

If |AB|= 1 then is |AC|= 1
2 and |CB|=

√
5

2 . Given |CB|= |CD|= |CA|+ |AD| we

conclude that |AS|= |AD|=
√

5−1
2

see Exercise 42
= 1

Φ
.

Exercise 43

If |AB| = 1 then is |AM| = 1
2 and |AT | = 1. Calculating |MT | yields |MT | =

√
5

2 .

Given |MS|= |MT | we conclude |AS|= |AM|+ |MS|= 1+
√

5
2 = Φ.

Exercise 44

Φ
2 +

1
Φ2 =

(√
5+1
2

)2

+

(
2√

5+1

)2

=
3+
√

5
2

+
2

3+
√

5

=
(3+
√

5)2 +22

2(3+
√

5)

=
6(3+

√
5)

2(3+
√

5)
= 3

Exercise 45

1
Φ

=
2

1+
√

5
1−
√

5
1−
√

5

=
2(1−

√
5

−4

=

√
5−1
2
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Φ−1 =

√
5+1
2
−1

=

√
5−1
2

Exercise 46

Φ+
1
Φ

=
1+
√

5
2

+
2

1+
√

5

=
(1+
√

5)2 +22

2(1+
√

5

=
10+2

√
5

2(1+
√

5)

=
2
√

5(
√

5+1)
2(1+

√
5)

=
√

5

Exercise 47

. for x1 =−1: (−1)3 +2(−1)2−1 = 0

. for x2 =−Φ:
(
−
(

1+
√

5
2

))3
+2
(
−
(

1+
√

5
2

))2
−1 =− 16+8

√
5

8 + 6+2
√

5
2 −1 = 0

. for x3 =−Φ′:
(
−
(

1−
√

5
2

))3
+2
(
−
(

1−
√

5
2

))2
−1 =− 16−8

√
5

8 + 6−2
√

5
2 −1 = 0

Exercise 48

. Φ2 = Φ+1

. Φ3 = Φ Φ2 = Φ (Φ+1) = Φ2 +Φ = 2Φ+1

. Φ4 = Φ Φ3 = Φ (2Φ+1) = 2Φ2 +Φ = 3Φ+2

. Φ5 = Φ Φ4 = Φ (3Φ+2) = 3Φ2 +2Φ = 5Φ+3

Exercise 49

month 0 1 2 3 4 5 6 7 8 9 10 11 12
couples of rabbits 1 1 2 3 5 8 13 21 34 55 89 144 233
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Exercise 50

1) We obtain the silver section by extending one of the sides of an isosceles right
triangle by its hypotenuse. Hence the line segment |AD| relates to |AB| as

δ = |AD|
|AB| =

(1+
√

2)|AB|
|AB| = 1+

√
2.

2) Solving the geometric ratio x
1 = 1

x−2 mathematically as the quadratic equation
x2− 2x− 1 = 0 for x, yields a discriminant D = 8 and the two roots x1 =
1+
√

2 and x2 = 1−
√

2.

3) By dividing the definition of the sequence of Pell by pn and subsequently
substituting its ratio by D = pn

pn−1
, we rewrite the number sequence of Pell in

its limit as D = 2+ 1
D . Therefore, the standardized equation D2−2D−1 = 0

describes the ratio D for incrementing indices without bound. It yields the
positive root D1 = 1+

√
2 = δ as meaningful answer to the above.

6. Coordinate systems

Exercise 51

1) (0,1)cc 3) (0,−4)cc

2)
(

3
√

2
2 , −3

√
2

2

)
cc

4)
(
−
√

2,−
√

2
)

cc

Exercise 52

1)
(

2
√

2, π

4

)
pc

3)
(
1, π

3

)
pc

2)
(
1, 3π

2

)
pc 4)

(
2, 7π

4

)
pc

Exercise 53(
−10

4 , 5
√

5
2

)
cc
=

(√
75
2 ,arctan(−

√
5)
)

pc
after rotation becomes(√

75
2 ,arctan(−

√
5)+ π

2

)
pc
=
(
−5
√

5
2 , −10

4

)
cc
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Exercise 54

1) tanθ = 3

2) r = 3
2cosθ+sinθ

3) r =−2cosθ

Exercise 55

1) y =±
√

2x+1

2)
√

x2 + y2 = atan2(y,x)

Exercise 56

The vertex D has coordinates

(
1+

√
2

2
,

√
2

2

)
. The growing radial coordinates are

the successive square roots of the natural numbers:
√

2,
√

3,
√

4,
√

5, . . .

The spiral of Theodore of Cyrene, also known as the ‘square root spiral’, is the
oldest mathematical spiral. For instance starting from the vertices A(0,0),B(1,0)
and C(1,1) it yields in 16 steps the included figure.

2 1 1 2 3 4

4

3

2

1

1

2
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Exercise 57
Applying the Pythagorean Identity yields:

x
√

t
a

= cos t

y
√

t
a

= sin t

=⇒


(

x
√

t
a

)2

= (cos t)2

(
y
√

t
a

)2

= (sin t)2

=⇒ t
a2 (x

2+y2) = 1 =⇒ t
a2 r2 = 1,

and solving it for r gives r =
a√
t

with its polar angle t ∈ R+\{0}.

Exercise 58
1) a = 2,b = 0 2) a = 0,b = 3

4 2- 0 2 4
polar axis

- 4 2 0 2 4
polar axis

--

3) a = 2,b = 3 4) a = 3,b = 2

4 -- -2 0 2 4
polar axis

- 4 2 0 2 4
polar axis

- -

Exercise 59

1) m = 0

2) a = 2,b = 4,m = 4, n1 = 2,n2 = 2,n3 = 2
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7. Vectors

Exercise 60

‖~F‖=
√
(10−20

√
2+60

√
3)2 +(60−20

√
2+90

√
3)2 = 206.22 and

α = arctan 60−20
√

2+90
√

3
10−20

√
2+60

√
3
= 1.14 rad

Exercise 61

~v+~w =

(
800cos240◦+90cos105◦

800sin240◦+90sin105◦

)
=

(
−423.294
−605.887

)
ground speed:√
(800cos240◦+90cos105◦)2 +(800sin240◦+90sin105◦)2 = 739.11 kms per hour

direction of ground velocity:

arctan
800sin240◦+90sin105◦

800sin240◦+90sin105◦
= 0.96+π = 4.10 rad

= 235.06◦ (referred to the positive x-axis)
= 235.06◦ (referred to the North)

Exercise 62

1)

 99
0
−128

 4)

 112
−22
−92


2)

 −60
−326
256

 5)

 0
−28

0


3) −428 6)

 104
88

122


Exercise 63

The angle between the vector ~f and the vector from the camera’s point to the object,
is less than 90◦, hence the object is captured.
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Exercise 64

1) |HB|= 0.3 and A(1.5,0,0),B(1.8,0,−0.4),C(1.8,1,−0.4),D(1.5,1,0),F(1.5,0.5,0)

2)
−→
AB×−→AD =

 0.4
0

0.3


3) G(1.74,0.5,0.18)

Exercise 65
√

2390

Exercise 66 70.89◦

8. Parameters

Exercise 67{
x = r cosθ

y = r sinθ

Exercise 68

1)

 x = 1−4λ

y =−4λ

z = 4−8λ

2)

 x
y
z

=

 1
−2
7

+λ

 4
3
1


Exercise 69

1)

 x
y
z

=

 4
2
8

+λ

 −1
4
3

 or

 x = 4−λ

y = 2+4λ

z = 8+3λ

or
4− x

1
=

y−2
4

=
z−8

3

2)

 x = 5+2µ

y = 8+2µ

z = 21+10µ

and this is equivalent to
x−5

2
=

y−8
2

=
z−21

10

3) S (3,6,11)
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Exercise 70

1) x−2 =−y+2 and z = 3

2)

 x = 5+λ

y = 5+λ

z = 5+µ 8 = 5+λ

8 = 5+λ

4 = 5+µ

has a solution for λ = 1 and µ =−1, hence P ∈ vC

Exercise 71

1)

 x
y
z

=

 3
1
0

+λ

 −7
0
1

+µ

 2
8
3


2) ~n =

 −8
23
−56


Exercise 72

1)

 x = 3+λ +4µ

y = 6+2λ +2µ

z = 2+3λ +µ

2) z = −4
6 x+ 11

6 y−7

Exercise 73

1)

 x = λ +5µ

y = 2λ −µ

z = 2λ +µ

2) z = 4
11 x+ 9

11 y

3) ~n =

 4
9
−11


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Exercise 74

The lines are not parallel because of their different direction vectors. And since

the system

 −8+5λ = 4+9µ

2+2λ =−1+µ

−4+3λ = 2+6µ

has no solution, the lines are not intersecting as

well. Hence both lines are skew lines.

Exercise 75 S
( 212

97 , −79
97 , −61

97

)
Exercise 76
The intersection of the three planes is the line by parameter equation{

x = 2
3 +λ

1
3

y = 1
3 +λ

2
3

Exercise 77
The intersection consists of the two points S1

(
1−4

√
2,2(1+

√
2),3(1−

√
2)
)

and

S2

(
1+4

√
2,2(1−

√
2),3(1+

√
2)
)

9. Kinematics

Exercise 78 For the real location function s(t) = 20+15t we conclude

-2 -1 1 2 3 4 5
t

20

40

60

80

100

m

its domain s = R,

its range s = R,

its root lying at t0 =−1.333
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Exercise 79

For the real location function s(t) = 20+15t + 1
2 (−9.81)t2 we conclude

its domain s = R,

its range s = ]−∞,31.47],

its roots lying at t1 =−1.004, t2 = 4.062

-2 -1 1 2 3 4 5
t

-30

-20

-10

10

20

30

m

Exercise 80 For the velocity function v(t) = 8.2+(−9.81)t we evaluate

1) v(0.5) = 3.295 m
s ,

2) v(1) =−1.610 m
s .

Exercise 81

y(t) = 3sin
(

2π

3
t + arcsin

(
1
3

))

Exercise 82

1) ‖−→ω ‖= ω = 66.67 rad
s with −→ω perpendicular to the wheel(disk),

2) 10.61 (wheel)turns per second,

3) 1000 rad consumed,

4) ‖~ac‖= ac = 1334 m
s2 .

Exercise 83

1) ~a is in T directed downhill,

2) ~ac is in U directed (centripetally) upwards,
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3) ~g is in J directed downwards.

Exercise 84

1) v = 2.7 m
s and at = 0.27 m

s2 ,

2) ac = 2.700 m
s2 and hence ‖~a‖= 2.713 m

s2 .

Exercise 85 Centering the polar coordinate system (r,θ) at the Wheel’s axis:

~s =−r~en +0~et ~s = r~er +0~eθ

~v = 0~en + rω~et ~v = 0~er + rω~eθ

~a = rω2~en +0~et ~a =−rω2~er +0~eθ

Exercise 86

1) Both masses land simultaneously (Independence of Motion Principle).

2) This took them 3.375 seconds.

3) As the first mass did not, the second traveled 33.75 meter horizontally.

Exercise 87

The rider and his motorcycle reach a maximum height of yT = 20.16 m before they
touch down after flying x = 202.1 m horizontally.

10. Collision detection

Exercise 88

1) B((1,3,5),4)

2) B((3,6,−3),2)

3) is not a circle

Exercise 89

1) C
(
(1,2),

√
5
)

2) The center of the circle is the intersection point of the perpendicular bisec-
tors (see page 46) on line segments [AB] and [BC], given A(0,0),B(2,0) and
C(0,4).
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Exercise 90 (x−20)2 +(y−50)2 = 502

Exercise 91 no collision

Exercise 92 Both circumscribed circles are tangent in the point T (1,−1).

Exercise 93 d =

√
3√
14
≈ 0.46

Exercise 94 d(S,vA) = 0.07 < 5, hence we have a collision

Exercise 95 For any~v 6=~o we satisfy (~v ·~p−~v ·~q)(~v ·~r−~v ·~q)6 0. Hence the point
Q lies in between the points P and R.

Exercise 96

1) d(V,vO) = 11

2) d(V,vO) = 0 and the point V lies in the polygon with vertices P,Q and O,
hence it is a successful landing.

Exercise 97 d(S,vA) = 0 and the point S lies in the polygon with vertices A,B and
C, hence the snooker ball lies in the triangle ABC filled with numbered balls.

Exercise 98 Collision occurs between the second and the third frame according to:

1) d(P,vA) =
9
5 3) d(P,vA) =

−1
5

2) d(P,vA) =
4
5 4) d(P,vA) =

−6
5

Exercise 99 In the third frame the squared distance is less than 225, hence we have
a collision. In other words, collision occurs between the second and the third frame.
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11. Matrices

Exercise 100

1)

 9 20 3 1
20 280 50 70
30 40 4 1

 4)


4 10 10

10 80 30
3 40 2
0 50 0



2)

 −7 −10 6 −3
−10 −440 50 40
−40 30 −2 −3

 5)


−1 0 −10
0 −120 20
3 30 0
−1 30 −1



3)


5 10 20

10 200 10
0 10 2
1 20 1

 6)


−1 0 −10
0 −120 20
3 30 0
−1 30 −1


Exercise 101

1)
(

8 8
1 4

)
5)
(

8 24 −8 40
1 12 2 17

)

2)

 3 1 2
−1 0 1
1 2 9

 6)
(

8 24 −8 40
1 12 2 17

)

3)

 1 −3 −3 −3
0 3 1 4
2 9 −1 14

 7)
(

8 1
8 4

)

4) C ·B does not exist 8)
(

8 1
8 4

)
Exercise 102

1)
(

70 20
30 10

)
5) D−1 does not exist

2)

( 1
5

−1
5

−3
10

4
5

)
6)

(
1 −7

5
−5
2

18
5

)
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3)
(

3 −4
−2 3

)
7)

( 9
5

−19
5

−13
10

14
5

)

4)

 −40 16 9
13 −5 −3
5 −2 −1

 8)

( 9
5

−19
5

−13
10

14
5

)

Exercise 103 −1 1 −4
2 2 0
3 3 2

·
 x

y
z

=

 5
4
1

⇔
 x

y
z

=


−1
2

7
4 −1

1
2

−5
4 1

0 −3
4

1
2

 ·
 5

4
1

⇔
 x

y
z

=


5
2
−1
2
−2


Exercise 104

if k = 1 we have ~f1 = F~f0
if k = 2 we have ~f2 = F~f1 = F2~f0
if k = 3 we have ~f3 = F~f2 = F3~f0
...
if we assume ~fk = Fk~f0 given k ∈ N

then for k+1 we get ~fk+1 = F~fk = Fk+1~fk

Exercise 105(
1 1

1+
√

5
2

1−
√

5
2

)
·

(
1+
√

5
2 0
0 1−

√
5

2

)
·

(
− 1−

√
5

2
√

5
, 1√

5

−−1−
√

5
2
√

5
,− 1√

5

)
=

(
0 1
1 1

)
= F1

(
1 1

1+
√

5
2

1−
√

5
2

)
·

(
6+2
√

5
4 0
0 6−2

√
5

4

)
·

(
− 1−

√
5

2
√

5
, 1√

5

−−1−
√

5
2
√

5
,− 1√

5

)
=

(
1 1
1 2

)
=

(
0 1
1 1

)
·
(

0 1
1 1

)
= F2

Exercise 106

f0 =
Φ0−Φ′0√

5
= 1−1√

5
= 0

f1 =
Φ1−Φ′1√

5
=

1+
√

5
2 − 1−

√
5

2√
5

=
2
√

5
2√
5
= 1

f2 =
Φ2−Φ′2√

5
=

6+2
√

5
4 − 6−2

√
5

4√
5

=
4
√

5
4√
5
= 1

f3 =
Φ3−Φ′3√

5
= (2+

√
5)−(2−

√
5)√

5
= 2

√
5√
5
= 2
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Exercise 107

K ·K =

(
1 0
0 0

)
L ·L =

(
1−a (1−a)a

b
b a

)
M ·M =

 1 a 0
0 0 0
0 0 1


Exercise 108

N ·N =

(
0 0
0 0

)
P ·P =

(
0 0
0 0

)
R ·R =

 0 0 0
0 0 0
0 0 0



12. Bezier curves

Exercise 109

~b021(t) = (1− t)2~p0 +2(1− t)t~p2 + t2~p1

= (1− t)2~p0 +2(1− t)t
(
~p0 +~p1

2

)
+ t2~p1

= (1− t)2~p0 +(1− t)t (~p0 +~p1)+ t2~p1

= (1−2t + t2)~p0 +(t− t2)(~p0 +~p1)+ t2~p1

= ~p0−2t~p0 + t2~p0 + t~p0− t2~p0 + t~p1− t2~p1 + t2~p1

= (1− t)~p0 + t~p1 =~b01(t)

Exercise 110

~b0123(t) =


x(t) = 3t−12t2 +12t3

y(t) = 3−12t +27t2−18t3

z(t) = 3t−6t2 +5t3
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-5 0 5

x

-5

0

5

y

-5

0

5

z

Exercise 111

The sum of the coefficients of~b012(t) = (1− t)2 +2(1− t)t + t2

= 1−2t + t2 +2t−2t2 + t2

= 1,
The sum of the coefficients of~b0123(t) = (1− t)3 +3(1− t)2t +3(1− t)t2 + t3

= 1−3t +3t2− t3 +3(1−2t + t2)t +3(t2− t3)+ t3

= 1−3t +3t2− t3 +3t−6t2 +3t3 +3t2−3t3 + t3

= 1.
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Exercise 112

p0
®

p1
®

p2
®

p3
®

p0
®

p1
®

p2
®

p3
®

p0
®

p1
®

p2
®

p3
®

Exercise 113

1) ~b03(t) =
{

x(t) =−2+7t
y(t) =−1+ t

2) ~b023(t) =
{

x(t) =−2+12t−5t2

y(t) =−1+14t−13t2

3) ~b0123(t) =
{

x(t) =−2+6t +6t2−5t3

y(t) =−1+12t−3t2−8t3

-2 2 4 6
x

-2

2

4

6

y

-2 2 4 6
x

-2

2

4

6

y

-2 2 4 6
x

-2

2

4

6

y
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Exercise 114

1) ~b0123(t) =
{

x(t) =−2−3t +24t2−19t3

y(t) =−1+12t−3t2−8t3

2) ~b0123(t) =
{

x(t) =−2+18t−39t2 +23t3

y(t) =−1+21t−30t2 +10t3

We notice this second plane cubic Bezier segment has a looped profile.

-4 -2 2 4
x

-4

-2

2

4

y

-4 -2 2 4
x

-4

-2

2

4

y

Exercise 115

~b0123(t) =

{
x(t) =−2−3t +24t2−19t3

y(t) =−1+12t−3t2−8t3

~s0123(t) =

 x(t) =− 5
3 +3t +4t2− 19

6 t3

y(t) = 17
6 + 7

2 t− 1
2 t2− 4

3 t3

-4 -2 2 4
x

-2

2

4

6

y
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Exercise 116 Evaluating the initial and final parameter value yields ~s0123(0) 6= −→p0
and, after simplifying, also~s0123(1) 6=−→p3.

Exercise 117

~s0123(t) =

 x(t) = 1
3 − t−2t2 + 5

3 t3

y(t) = 7
6 −

3
2 t + 1

2 t2

Exercise 118

1) ~b01(t) =
{

x(t) =−1+2t
y(t) = 2t

2) ~b012(t) =
{

x(t) =−1+4t−5t2

y(t) = 4t−3t2

3) ~b0123(t) =
{

x(t) =−1+6t−15t2 +10t3

y(t) = 6t−9t2 +6t3

4) y = x+1

5) We obtain the parameter values t of the occasional intersection points by sub-
stituting the parametric equation of ~b0123(t) into the cartesian equation of
~b01(t) .

y= x+1 ⇒ 6t−9t2+6t3 =(−1+6t−15t2+10t3)+1 ⇒ t = 0∨t = 0∨t =
3
2

The mathematically found parameter value t = 3
2 is for this occasion mean-

ingless because of the constraint t ∈ [0,1] ⊂ R. Substituting the remaining
parameter value t = 0 (of multiplicity 2) into the linear Bezier segment~b01(t)
yields the intersection point~b01(0) = (−1,0) (of multiplicity 2).

13. Transformations

Exercise 119
2 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 1




x
y
z
1

=


x′

y′

z′

1




2 0 0 0
0 1 0 0
0 0 0,5 0
0 0 0 1




0 −50 −20
30 100 0
−100 −20 −300

1 1 1

=


0 −100 −40

30 100 0
−50 −10 −150

1 1 1


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Exercise 120 cos π

4 −sin π

4 0
−sin π

4 cos π

4 0
0 0 1

 0 2 0
0 1 1
1 1 1

=

 0
√

2
2 −

√
2

2
0 3

√
2

2

√
2

2
1 1 1



Exercise 121 x′

y′

1

=

 1 0 3
0 1 1
0 0 1




1√
2

−1√
2

0
1√
2

1√
2

0

0 0 1


 1 0 −3

0 1 −1
0 0 1

 x
y
1



=


1√
2

−1√
2

3−
√

2
1√
2

1√
2

1−2
√

2

0 0 1


 x

y
1




1√
2

−1√
2

3−
√

2
1√
2

1√
2

1−2
√

2

0 0 1


 6 8 7

1 2 3
1 1 1

=


5√
2
+3−

√
2 6√

2
+3−

√
2 4√

2
+3−

√
2

7√
2
+1−2

√
2 10√

2
+1−2

√
2 10√

2
+1−2

√
2

1 1 1


Exercise 122

1) The plane basic shearing conserves area: shearing transforms rectangles into
parallelograms, which have the same formula for area.

2) The inverse basic shearing takes the opposite angle: straightforward matrix
calculations prove

Sσx ·S−σx = I3 and Sσy ·S−σy = I3.

3) Straightforward matrix calculations prove

Sσx,σy ·S−σx,−σy 6= I3.
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4) Straightforward matrix calculations also prove

Sσx,σy 6= Sσx ·Sσy and Sσx,σy 6= Sσy ·Sσx .

Exercise 123
cos π

4 0 sin π

4 0

0 1 0 0

−sin π

4 0 cos π

4 0

0 0 0 1




1 0 0 0
0 cos π

6 −sin π

6 0

0 sin π

6 cos π

6 0

0 0 0 1




1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 1

=



1√
2

1
2
√

2

√
3

2
√

2
−3−

√
3

2
√

2

0
√

3
2

−1
2

−
√

3+1
2

−1√
2

1
2
√

2

√
3

2
√

2
1−
√

3
2
√

2

0 0 0 1




1√
2

1
2
√

2

√
3

2
√

2
−3−

√
3

2
√

2

0
√

3
2

−1
2

−
√

3+1
2

−1√
2

1
2
√

2

√
3

2
√

2
1−
√

3
2
√

2

0 0 0 1




0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

=



−3−
√

3
2

−1−
√

3
2
√

2
−2−

√
3

2
√

2
−3

2
√

2
−
√

3+1
2

−
√

3+1
2

1
2

−
√

3
2

−
√

3+1
2

−
√

3−1
2

2−
√

3
2
√

2
1

2
√

2

1 1 1 1


Exercise 124

. The centroid is Z = (1,5).

.

 1 0 1
0 1 5
0 0 1

 0 1 0
−1 0 0
0 0 1

 1 0 −1
0 1 −5
0 0 1

=

 0 1 −4
−1 0 6
0 0 1


.

 0 1 −4
−1 0 6
0 0 1

 −5 −1 9
10 5 0
1 1 1

=

 6 1 4
11 7 −3
1 1 1



Exercise 125
1 0 0 2
0 1 0 2
0 0 1 1
0 0 0 1




2 0 0 0
0 4 0 0
0 0 3 0
0 0 0 1




1 0 0 −2
0 1 0 −2
0 0 1 −1
0 0 0 1

=


2 0 0 −2
0 4 0 −6
0 0 3 −2
0 0 0 1


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
2 0 0 −2
0 4 0 −6
0 0 3 −2
0 0 0 1




2 5 5 2 2 5 5 2
2 1 1 2 5 4 1 5
1 2 −1 −1 1 2 4 4
1 1 1 1 1 1 1 1

=


2 8 8 2 2 8 8 2
2 −2 −2 2 14 10 −2 14
1 4 −5 −5 1 4 10 10
1 1 1 1 1 1 1 1



Exercise 126 1 0 3
0 1 3
0 0 1

 0 −1 0
1 0 0
0 0 1

 1 0 −3
0 1 −3
0 0 1

=

 0 −1 6
1 0 0
0 0 1


 0 −1 6

1 0 0
0 0 1

 2 4 5 4 2 1
2 2 3 4 4 3
1 1 1 1 1 1

=

 4 4 3 2 2 3
2 4 5 4 2 1
1 1 1 1 1 1


Exercise 127

Firstly, we translate over a distance 1 upwards. Secondly, we rotate around the
origin O over an angle −θ , given θ = arctan(2). Essentially, we reflect over the
x-axis. Nextly, we inversely rotate over the angle θ , given θ = arctan(2). Finally,
we inversely translate over the distance 1 downwards. 1 0 0

0 1 −1
0 0 1




1√
5

−2√
5

0
2√
5

1√
5

0

0 0 1


 1 0 0

0 −1 0
0 0 1




1√
5

2√
5

0
−2√

5
1√
5

0

0 0 1


 1 0 0

0 1 1
0 0 1

=


−3
5

4
5

4
5

4
5

3
5

−2
5

0 0 1




−3
5

4
5

4
5

4
5

3
5

−2
5

0 0 1


 4 5 6 9

2
1 2 4 3
1 1 1 1

=

 −0.8 −0.6 0.4 0.5
3.4 4.8 6.8 5
1 1 1 1



Exercise 128 Applying row reductions to calculate the inverse matrix operators for
each, yields respectively

. the inverse translation matrix T−1−→
AB

= T−→BA

. the inverse basic scale operator

S−1
O =


1
sx

0 0 0
0 1

sy
0 0

0 0 1
sz

0
0 0 0 1


. the inverse basic rotation operator R−1

O,θ = RO,−θ
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Exercise 129

We rotate around the origin O over the angle−π

4 . Nextly, we reflect over the x-axis.
Finally, we inversely rotate over the angle π

4 .
1√
2

−1√
2

0
1√
2

1√
2

0
0 0 1


 1 0 0

0 −1 0
0 0 1




1√
2

1√
2

0
−1√

2
1√
2

0
0 0 1

=

 0 1 0
1 0 0
0 0 1


 0 1 0

1 0 0
0 0 1

 −3
1
1

=

 1
−3
1



Exercise 130

We rotate around the origin O over the angle −30◦. Nextly, we reflect over the
x-axis. Finally, we inversely rotate over the angle 30◦.

√
3

2
−1
2 0

1
2

√
3

2 0
0 0 1


 1 0 0

0 −1 0
0 0 1




√
3

2
1
2 0

−1
2

√
3

2 0
0 0 1

=


√

3
2

1
2 0

−1
2

√
3

2 0
0 0 1




√
3

2
1
2 0

−1
2

√
3

2 0
0 0 1


 3

4
1

=

 4.96
0.60

1


The radius of the circles equals d(P,M) =

√
2.
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14. Transformation analysis

Exercise 131 We translate the origin O by the displacement~t =
(
−3
4

)
by applying

the matrix operator

 1 0 tx
0 1 ty
0 0 1

 on the left hand side:

 1 0 −3
0 1 4
0 0 1

 ·
 0

0
1

=

 −3
4
1


We draw unit disks (to better envision the circles) around the origin O in red, and
its translation image O′ in blue.
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Exercise 132 We scale the square ABCD by applying the standard scaling matrix

operator

 sx 0 0
0 sy 0
0 0 1

 on the left hand side:

 5 0 0
0 2 0
0 0 1

 ·
 1 1 2 2

1 2 2 1
1 1 1 1

=

 5 5 10 10
2 4 4 2
1 1 1 1


We draw the square ABCD in red and its standardly scaled image A′B′C′D′ in blue.

Exercise 133 We rotate the triangle UVW by applying the standard rotation

matrix operator

 cosα −sinα 0
sinα cosα 0

0 0 1

 on the left hand side:

 cos(−23◦) −sin(−23◦) 0
sin(−23◦) cos(−23◦) 0

0 0 1

 ·
 2 4 4

0 1 −1
1 1 1

=

 1.84 4.07 3.29
−0.78 −0.64 −2.48

1 1 1


We draw the triangle UVW in red and its standardly rotated image U ′V ′W ′ in blue.
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Exercise 134

Erratum: the rotation angle is intended to be −23◦ instead of the positive value.

Given the translation T( −3
4

), the standard scaling S( 5
2

) and the standard rotation

RO(−23◦) deliver these composite transformation matrices:

1) the action A = T( −3
4

) ·RO(−23◦) ·S( 5
2

) =

 4.60 0.78 −3.00
−1.95 1.84 4.00
0.00 0.00 1.00


2) the action B = RO(−23◦) ·S( 5

2

) ·T( −3
4

) =

 4.60 0.78 −10.68
−1.95 1.84 13.23
0.00 0.00 1.00



Exercise 135 We draw the triangle UVW in red, its A-image U ′V ′W ′ in blue and
its B-image U ′′V ′′W ′′ in brown.
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Exercise 136 Retrieving the ingredients of

1) the TRS-based action transformation A,

. read the T( −3.00
4.00

) displacement vector from the last matrix column,

. calculate column wise the S( sx
sy

) scale factors respectively as

sx = ‖~v1‖=
√
(4.60)2 +(−1.95)2 ≈ 5.00

sy = ‖~v2‖=
√

(0.78)2 +(1.84)2 ≈ 2.00

. and finally retrieve the RO(θ) rotation angle via the inverse tangent-with-
quadrant function atan2 which takes two arguments, given sx > 0

θ = atan2
(
v1y ,v1x

)
= atan2(−1.95,4.60)≈−22.97◦

2) the loosely composite action transformation B: fail for translation ingredient.
Also, in general for various non-TRS composites, beware of a fail.

Exercise 137 For the ingredients of the given TRS-based action transformation A,

. read the T( 5.00
4.00

) displacement vector from the last matrix column,

. calculate column wise the S( sx
sy

) scale factors respectively as

sx = ‖~v1‖=
√
(1.73)2 +(1.00)2 ≈ 2.00

sy = ‖~v2‖=
√
(−1.50)2 +(2.60)2 ≈ 3.00

. and finally retrieve the RO(θ) rotation angle via the inverse tangent-with-
quadrant function atan2 which takes two arguments, given sx > 0

θ = atan2
(
v1y ,v1x

)
= atan2(1.00,1.73)≈ +30.00◦

Exercise 138

To pivot the square ABCD around its centroid Z = 1
4 (A+B+C+D)= (1.5 ,1.5) we

‘sandwich’ the standard rotator

 cos(45◦) −sin(45◦) 0
sin(45◦) cos(45◦) 0

0 0 1

 by the appropriate

translators to and fro the standard position in the origin O.
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Applying the pivot-operator

PZ(45◦)=

 1 0 1.5
0 1 1.5
0 0 1

 ·
 cos(45◦) −sin(45◦) 0

sin(45◦) cos(45◦) 0
0 0 1

 ·
 1 0 −1.5

0 1 −1.5
0 0 1


onto the vertices of the square ABCD produces the pivoted image square A′B′C′D′

PZ(45◦) ·

 1 1 2 2
1 2 2 1
1 1 1 1

≈
 1.50 0.79 1.50 2.21

0.79 1.50 2.21 1.50
1 1 1 1


We draw the original square ABCD in red and its pivoted image A′B′C′D′ in blue.

Exercise 139

To orbit the square ABCD around the origin O we simply apply the standard rotator.

Applying this standard orbit-operator

O(60◦) =

 cos(60◦) −sin(60◦) 0
sin(60◦) cos(60◦) 0

0 0 1


onto the vertices of the square ABCD produces the orbited image square A′′B′′C′′D′′

O(60◦) ·

 1 1 2 2
1 2 2 1
1 1 1 1

≈
 −0.37 −1.23 −0.73 0.13

1.37 1.87 2.73 2.23
1 1 1 1


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We draw the original square ABCD in red and its orbited image A′′B′′C′′D′′ in blue.

Exercise 140 Applying the composite operator

G = PZ(45◦) ·O(60◦)

=

 1 0 1.5
0 1 1.5
0 0 1

 ·
 cos(45◦) −sin(45◦) 0

sin(45◦) cos(45◦) 0
0 0 1

 ·
 1 0 −1.5

0 1 −1.5
0 0 1

 ·O(60◦)

onto the vertices of the square ABCD produces the G-image square

G ·

 1 1 2 2
1 2 2 1
1 1 1 1

≈
 0.28 −0.69 −0.95 0.02

0.09 −0.17 0.79 1.05
1 1 1 1


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We draw the original square ABCD in red and its G-image A′B′C′D′ in blue.

Exercise 141

Applying the composite operator

H = O(60◦) ·PZ(45◦)

= O(60◦) ·

 1 0 1.5
0 1 1.5
0 0 1

 ·
 cos(45◦) −sin(45◦) 0

sin(45◦) cos(45◦) 0
0 0 1

 ·
 1 0 −1.5

0 1 −1.5
0 0 1


onto the vertices of the square ABCD produces the H-image square

H ·

 1 1 2 2
1 2 2 1
1 1 1 1

≈
 0.06 −0.90 −1.16 −0.20

1.70 1.44 2.40 2.66
1 1 1 1


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We draw the original square ABCD in red and its H-image A′′B′′C′′D′′ in blue.

Comparing this H-outcome to the G-outcome of the previous exercise 140, reveals
how transformations are not commutative. This is of course due to the fact that the
matrix product is not commutative.

Exercise 142

1) Computing the look-at action matrix A−→BT we TRS-wise assemble it as

A−→BT = T−→OB ·RB̂T ·S
(

1
1

) = T−→OB ·RB̂T · I3 = T−→OB ·RB̂T

= T(
1
7

) ·RB̂T

which will point the isosceles triangle KLM situated in B towards a target
positioned in T . We therefore need to determine the shape’s desired direction
vector as

v̂1 =

−→
BT

‖−→BT‖
=

1

‖−→BT‖
(~t−~b)

=
1√

(−10)2 +(−1)2

((
−9
6

)
−
(

1
7

))
=

1√
101

(
−10
−1

)
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Hence we compose all the above into the look-at operator

A−→BT ≈

 −0.995 0.099 1.000
−0.099 −0.995 7.000

0 0 1

 , given v̂1 ≈
(
−0.995
−0.099

)

Applying this look-at action onto the vertices of the triangle KLM produces
its image pointer K′L′M′

A−→BT ·

 −2 4 −2
1 0 −1
1 1 1

≈
 3.09 −2.98 2.89

6.20 6.60 8.19
1 1 1


2) We draw the original triangle KLM in red and its image pointer K′L′M′ (from

centre B looking at target T ) in blue.

Exercise 143 To retrieve the ingredients of the look-at action matrix A−→BT of the
previous exercise 143, we

. read the T( 1
7

) displacement vector from the last matrix column,

. calculate column wise the S( sx
sy

) scale factors respectively as

sx = ‖~v1‖=
√
(−0.995)2 +(−0.099)2 ≈ 1.00

sy = ‖~v2‖=
√

(0.099)2 +(−0.995)2 ≈ 1.00



ANIMATION MATHS (2021) ANSWERS 77

. and finally retrieve the RO(θ) rotation angle via the inverse tangent-with-
quadrant function atan2 which takes two arguments, given sx > 0

θ = atan2
(
v1y ,v1x

)
= atan2(−0.099,−0.995)≈ −174.289◦

Exercise 144 Given is the look-at action matrix computed on page 324 as

A−→BT ≈

 0.93 −0.37 5.00
0.37 0.93 4.00

0 0 1

 .

To retrieve the ingredients of this look-at action matrix A−→BT , we

. read the T( 5
4

) displacement vector from the last matrix column,

. calculate column wise the S( sx
sy

) scale factors respectively as

sx = ‖~v1‖=
√

0.932 +0.372 ≈ 1.00

sy = ‖~v2‖=
√
(−0.37)2 +0.932 ≈ 1.00

. and finally retrieve the RO(θ) rotation angle via the inverse tangent-with-
quadrant function atan2 which takes two arguments, given sx > 0

θ = atan2
(
v1y ,v1x

)
= atan2(0.37,0.93)≈ +21.80◦
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15. Scene Graphs

Exercise 145

We model the bones themselves by scaling the blueprint diamond B0 according to
their required sizes.

B0 =

 0 0.5 1 0.5
0 0.5 0 −0.5
1 1 1 1


1) Firstly, the parent-to-child object tree for this robot arm looks like
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2) Secondly, the described embedding tranformations that link each successive
local space of the scene graph read like

. E1 =

 cos20◦ −sin20◦ 1
sin20◦ cos20◦ 0

0 0 1

 hosting B1 =

 4 0 0
0 1 0
0 0 1

 ·B0,

. E2 =

 cosα −sinα 4
sinα cosα 0

0 0 1

 hosting limb B2 =

 3 0 0
0 1 0
0 0 1

 ·B0,

. E3 =

 cosβ −sinβ 3
sinβ cosβ 0

0 0 1

 hosting limb B3 =

 5 0 0
0 1 0
0 0 1

 ·B0.

3) Finally, implemented in GeoGebra the arm looks like this
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Exercise 146

We use the unit circle C0 =C(O;1) and model by the isosceles triangle the

Craft =

 1.5 −1.5 −1.5
0.0 1.0 −1.0
1 1 1


1) Firstly, the parent-to-child object tree for this solar system looks like
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2) Secondly, the described embedding tranformations read like

. E1 =


cos
( 2π

350 day
)
−sin

( 2π

350 day
)

0

sin
( 2π

350 day
)

cos
( 2π

350 day
)

0

0 0 1

 ·
 1 0 100

0 1 0
0 0 1


hosting the Planet =

 15 0 0
0 15 0
0 0 1

 ·C0 given the unit circle C0,

. E2 =


cos
( 2π

50 day
)
−sin

( 2π

50 day
)

0

sin
( 2π

50 day
)

cos
( 2π

50 day
)

0

0 0 1

 ·
 1 0 40

0 1 0
0 0 1


hosting its Moon =

 5 0 0
0 5 0
0 0 1

 ·C0 given the unit circle C0,

. E3 =


cos
( 2π

5 day
)
−sin

( 2π

5 day
)

0

sin
( 2π

5 day
)

cos
( 2π

5 day
)

0

0 0 1

 ·
 1 0 15

0 1 0
0 0 1


hosting the satellite Craft =

 1.5 −1.5 −1.5
0.0 1.0 −1.0
1 1 1

.

3) Finally, implemented in GeoGebra this solar system looks like this
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Exercise 147

The rectangular blueprint T0 becomes the tank. The blueprint T0 scales non-uniformly
by scale factor sy = 0.5 to its square turret. Also T0 scales non-uniformly by scale
factor sx = 0.25 to a stretched barrel.

T0 =

 −1 1 1 −1
2 2 −2 −2
1 1 1 1


1) The parent-to-child object tree for this layered object tank-turret-barrel is
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2) Secondly, the described embedding tranformations read like

. E1 =


cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1

 ·
 1 0 9

0 1 0
0 0 1

 hosting the Tank T0

with its orbit center positioned at a freely chosen distance 9 (in point O),

. E2 =

 1 0 0
0 1 0
0 0 1

 ·


cos(β ) −sin(β ) 0

sin(β ) cos(β ) 0

0 0 1

 hosting, set β =−α

to keep its orientation to the South, the Turret =

 1 0 0
0 0.5 0
0 0 1

 ·T0,

. E3 =

 1 0 0
0 1 −2
0 0 1

 hosting its fixed Barrel =

 1 0.25 0
0 1 0
0 0 1

 ·T0.

3) Finally, implemented in GeoGebra this layered tank-turret-barrel system
looks like this
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16. View Transformation

Exercise 148 Given the world space is 100 pixels wide and 50 high and the camera
window is 15 wide and 15 high, and is rotated over a 15◦ angle around its bottom
left vertex C in position (87, 10).

Performing the required boundary check, takes

1) constructing the camera transformation,

F( 87
10

)(15◦) = T( 87
10

) ·RO(15◦) ·S( 1
1

)

=

 cos15◦ −sin15◦ 87
sin15◦ cos15◦ 10

0 0 1

≈
 0.97 −0.26 87

0.26 0.97 10
0 0 1

 .

2) determining the vertices of the camera window,

Cam =

 0 15 15 0
0 0 15 15
1 1 1 1


3) transforming the camera window vertices by the camera transformation,

Cam′ = F( 87
10

)(15◦) ·Cam

≈

 87.00 101.50 97.61 83.12
10.00 13.88 28.37 24.49

1 1 1 1


4) verifying wether the camera window image Cam′ stays within the world bound-

aries, we discover the second image vertex (101.50, 13.88) to be outside of
the given world 100×50-rectangle.

Exercise 149 A rectangular camera window has a width of 10 by a height of 8 units.
If the left bottom vertex C of the rectangle is located at the point (3, 4) and it is
rotated over an angle of 30◦ around C then we determine the

1) camera transformation to put the camera window at this position as,

F( 3
4

)(30◦) = T( 3
4

) ·RO(30◦) without any scaling yet

=

 cos30◦ −sin30◦ 3
sin30◦ cos30◦ 4

0 0 1

≈
 0.87 −0.50 3

0.50 0.87 4
0 0 1

 .
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2) view transformation to return the camera capture horizontally filling our fixed
game window measuring 800 by 600 pixels as

V( 3
4

)(30◦) = F( 3
4

)(30◦)−1

=
(
T( 3

4

) ·RO(30◦) ·S( sx
sy

))−1

= S−1(
sx
sy

) ·R−1
O (30◦) ·T−1(

3
4

)
= S( 1/sx

1/sy

) ·RO(−30◦) ·T( −3
−4

)

=

 800
10 0 0
0 600

8 0
0 0 1

 ·
 cos(−30◦) −sin(−30◦) 0

sin(−30◦) cos(−30◦) 0
0 0 1

 ·
 1 0 −3

0 1 −4
0 0 1


=

 80 0 0
0 75 0
0 0 1

 ·
 cos30◦ sin30◦ 0
−sin30◦ cos30◦ 0

0 0 1

 ·
 1 0 −3

0 1 −4
0 0 1


≈

 80 0 0
0 75 0
0 0 1

 ·
 0.87 0.50 −4.6
−0.50 0.87 1.96

0 0 1


=

 69.28 40.00 −367.85
−37.50 64.95 −147.31

0 0 1



Exercise 150

. Verifying that the matrix product of matrices (16.1) and (16.6) returns matrix
I3

F( 400
100

)(21.8◦) ·V( 400
100

)(21.8◦)

≈

 0.93 −0.37 400.00
0.37 0.93 100.00

0 0 1

 ·
 0.93 0.37 −409.00
−0.37 0.93 55.70

0 0 1


≈

 1.00 0.00 0.00
0.00 1.00 0.00

0 0 1


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. Proving that the matrix product matrices (16.2) and (16.4) yields matrix I3
sx cosθ −sy sinθ c1

sx sinθ sy cosθ c2

0 0 1

 ·


cosθ

sx

sinθ

sx

−v̂1 ·~c
sx

− sinθ

sy

cosθ

sy

−v̂2 ·~c
sy

0 0 1



=


(cosθ)2 +(sinθ)2 0 −((cosθ)2 +(sinθ)2)c1 + c1

0 (cosθ)2 +(sinθ)2 −((sinθ)2 +(cosθ)2)c2 + c2

0 0 1


=

 1 0 0
0 1 0
0 0 1


. Proving the matrix product of matrices (16.3) and (16.5) produces matrix I3

F~c(θ) ·V~c(θ) =


v1x v2x c1

v1y v2y c2

0 0 1

 ·


v̂1x

‖~v1‖
v̂1y

‖~v1‖
− v̂1 ·~c
‖~v1‖

v̂2x

‖~v2‖
v̂2y

‖~v2‖
− v̂2 ·~c
‖~v2‖

0 0 1



=


(v̂1x)

2 +(v̂2x)
2 0 0

0 (v̂1y)
2 +(v̂2y)

2 0

0 0 1



=


(cosθ)2 +(−sinθ)2 0 0

0 (sinθ)2 +(cosθ)2 0

0 0 1


=

 1 0 0
0 1 0
0 0 1


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Exercise 151 Construct an arrow spanning edges between vertices, in their order
{(0, 20),(20, 0),(10, 0),(10, −20),(−10, −20), (-10, 0),(−20, 0),(0, 20)}.

1) Positioning this arrow in the world space implies we need to construct its em-
bedding transformation E. First scale it to 1

10 of its original size, then rotate
it by an angle of +170◦ around its pivot and finally position this instanced
arrow with its pivot put in point (17, 19). Calculating and visualising the
according arrow image positioned in the world space in GeoGebra by setting

A0 =

 0 20 10 10 −10 −10 −20 0
20 0 0 −20 −20 0 0 20
1 1 1 1 1 1 1 1


upon which we TRS-place the arrow A0 in world space as pictured underneath.

E =

 1 0 17
0 1 19
0 0 1

 ·
 cos170◦ −sin170◦ 0

sin170◦ cos170◦ 0
0 0 1

 ·
 0.1 0 0

0 0.1 0
0 0 1


≈

 −0.099 −0.017 17
0.017 −0.099 19

0 0 1


A′0 = E ·A0

≈

 16.65 15.03 16.02 16.36 18.33 17.98 18.97 16.65
17.03 19.35 19.17 21.14 20.80 18.83 18.65 17.03

1 1 1 1 1 1 1 1


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2) Returning the camera captured arrow from world space to the fixed game
window, which is requiring a view transformation. Calculating and visualis-
ing the according camera capture positioned in the world space in GeoGebra
by setting

Cam =

 0 0 15 15 0
0 15 15 0 0
1 1 1 1 1


upon which we forwardly TRS-place the camera Cam in world space by the
camera transformation F as pictured underneath.

F =

 1 0 12
0 1 14
0 0 1

 ·
 cos30◦ −sin30◦ 0

sin30◦ cos30◦ 0
0 0 1

 ·


1
1.13 0 0

0 1
1.13 0

0 0 1


≈

 0.77 −0.44 12
0.44 0.77 14

0 0 1


Cam′ = F ·Cam

≈

 12 5.36 16.86 23.50 12
14 25.50 32.13 20.64 14
1 1 1 1 .1


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3) Stacking the former view transformation V on top of the latter embedding
transformation E, to matrix multiply these into one action matrix. Calculat-
ing and visualising the subsequent arrow image A′′0 as brought into the game
window in GeoGebra.

A′′0 = V ·E ·A0

≈

 0.77 −0.44 12
0.44 0.77 14

0 0 1

−1

·

 −0.099 −0.017 17
0.017 −0.099 19

0 0 1

 ·A0

≈

 0.98 0.57 −19.65
−0.57 0.98 −6.92

0 0 1

 ·
 −0.099 −0.017 17

0.017 −0.099 19
0 0 1

 ·A0

≈

 0.98 0.57 −19.65
−0.57 0.98 −6.92

0 0 1

 ·A′0
≈

 6.27 5.99 6.85 8.31 10.04 8.58 9.45 6.27
0.34 3.52 2.80 4.53 3.07 1.34 0.62 0.34

1 1 1 1 1 1 1 1


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Exercise 152 At a certain time, the pivot point P of such a triangular UFO was
located in (299,99) when its nose point N was in (300,100). The military cam-
era window measured 15 width by 10 height with the bottom left vertex C of the
camera’s rectangle situated in (298, 97) on the UFO’s right wing tip as portrayed.

N

C

P

We model this UFO by the isosceles triangle

U0 =

 300 298 297
100 97 98
1 1 1



1) Given all above, we answer the matrix product to deliver the view transforma-
tion which brings this UFO horizontally (meaning

−→
PN horizontally) into our

game window.
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2) We compute the former matrix product using GeoGebra to answer the UFO
view transformation matrix.

V =

 cos(−45◦) −sin(−45◦) 0
sin(−45◦) cos(−45◦) 0

0 0 1

 ·
 1 0 −298

0 0 −97
0 0 1


≈

 0.71 0.71 −279.31
−0.71 0.71 142.13

0 0 1


U ′0 = V ·U0

≈

 2.12 0.00 0.00
0.71 0.00 1.41

1 1 1



3) We also append a window-filling scaling for a ground based view port of
60 width by 40 height. This scaling is uniform. We recompute the former
matrix product now including the latter scaling using GeoGebra to answer the
zoomed UFO view transformation matrix.

S =


60
15 0 0

0 40
10 0

0 0 1

=

 4 0 0
0 4 0
0 0 1


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U ′′0 = S ·U ′0

≈

 8.49 0.00 0.00
2.83 0.00 5.66

1 1 1


And as for the zoomed UFO view transformation matrix, we conclude

Vzoom =

 4 0 0
0 4 0
0 0 1

 ·
 cos(−45◦) −sin(−45◦) 0

sin(−45◦) cos(−45◦) 0
0 0 1

 ·
 1 0 −298

0 0 −97
0 0 1


≈

 4 0 0
0 4 0
0 0 1

 ·
 0.71 0.71 −279.31
−0.71 0.71 142.13

0 0 1


≈

 2.83 2.83 −1117.23
−2.83 2.83 568.51

0 0 1


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17. Hypercomplex numbers

Exercise 153

z1 = 2+2i =
√

8(cos45◦+ isin45◦)
z2 =−1+ i =

√
2(cos135◦+ isin135◦)

z3 =−1−
√

3i = 2(cos240◦+ isin240◦)
z4 = 3−3i =

√
18(cos315◦+ isin315◦)

Exercise 154

1) −9+3i 4) 2−10i
2) 16−24i 5) 31−25i
3) −1+5i 6) −1+3i

Exercise 155

1) z = cos120◦+ isin120◦

Via the complex number a referring to the point A, we calculate the image
vertices (as a · z,b · z,c · z en d · z):

A′ =

(
−1−

√
3

2
,
−1+

√
3

2

)
B′ = (−

√
3,1)

C′ = (0,2)

D′ =

(
−1+

√
3

2
,

1+
√

3
2

)
2) A complete identical approach applies to r = 3(cos80◦+ isin80◦)

Exercise 156

f (−1) =

(
1+
√

5
2

)−1
−
(

1−
√

5
2

)−1

√
5

=

2
1+
√

5
− 2

1−
√

5√
5

=

2−2
√

5−2−2
√

5
(1+
√

5)(1−
√

5)√
5

=
−4
√

5
1−5√

5
= 1

Analoguously we calculate f (−2) =−1, f (−3) = 2, f (−4)−3, f (−5) = 5, . . .

Exercise 157

1) 3−2i− j+4k 4) 4−7i−4 j+ k
2) 2 5) −2−10i−10 j−6k

3) 2+4i−2k 6) −1
6 i− 1

3 j+ 1
6 k
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Exercise 158
[
cos θ

2 ,
(
0,0,sin θ

2

)]
[0,(x,y,z)]

[
cos θ

2 ,
(
0,0,−sin θ

2

)]
=
[
−zsin θ

2 ,
(
xcos θ

2 − ysin θ

2 ,ycos θ

2 + xsin θ

2 ,zcos θ

2

)][
cos θ

2 ,
(
0,0,−sin θ

2

)]
= [0,(xcosa− ysina,ycosa+ xsina,z)]

Exercise 159

1)


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1
0
0
1

=


0
1
0
1


2) qrq∗ =

[
0,(0,1,0)

]
Exercise 160

1)


1 0 0 0
0 −1

2

√
3

2 0
0 −

√
3

2
−1
2 0

0 0 0 1




2
3
1
1

=


2

−3+
√

3
2

−1−3
√

3
2
1


2) qrq∗ =

[
0,

(
2,
−3+

√
3

2
,
−1−3

√
3

2

)]

Exercise 161

We calculate qrq∗=

[
0,
(

1√
6
, 2√

6
, 1√

6

)]
[0,(1,1,0)]

[
0,
(

1√
6
, 2√

6
, 1√

6

)]∗
= [0,(0,1,1)].

The image point equals (0,1,1).

Exercise 162

Z +Z∗ = 2a
(

1 0
0 1

)
Z−Z∗ =−2b

(
0 −1
1 0

)
Z ·Z∗=

(
a −b
b a

)
·
(

a b
−b a

)
=

(
a2 +b2 0

0 a2 +b2

)
=(a2+b2)

(
1 0
0 1

)
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3. Trigonometry
DELETION OF ’COTERMINAL ANGLES’

F.1 Pairs of angles
We briefly explain the properties of two pairs of angles that are useful in this book.

Oppositely signed angles; their measurements add up to 0◦. In other words, if
α and β are opposite then α + β = 0◦ or β = −α . The corresponding figure
shows how the cosines of opposite angles remain invariant, while their sines receive
opposite signs. This leads to the trigonometric formulas cos(−α) = cosα and
sin(−α) =−sinα .

Complementary angles; their measurements add up to 90◦. In other words, if α

and β are complementary then α +β = 90◦ or β = 90◦−α . The corresponding
figure shows how the sine of α equals the cosine of 90◦−α and the cosine of α

equals the sine of 90◦−α . This leads to the trigonometric formulas cos(90◦−α) =
sinα and sin(90◦−α) = cosα .

α

− α

α

90°−α

Figure F.1: Opposite and complementary angles

F.2 Sum identities
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In this paragraph we state and prove all trigonometric ratios of a sum of two angles.
We firstly emphasise the non-linearity of all trigonometric ratios: e.g. for the sine
we encounter sin(α + β ) 6= sinα + sinβ . Indeed, e.g. for angles α = 60◦ and
β = 30◦ the value sin90◦ = 1 does not equal the sum sin60◦+ sin30◦ =

√
3+1
2 .

Given the above inequality, we realise the need for the correct formulas which are
stated below.

sin(α +β ) = sinα cosβ + cosα sinβ sin(α−β ) = sinα cosβ − cosα sinβ

cos(α +β ) = cosα cosβ − sinα sinβ cos(α−β ) = cosα cosβ + sinα sinβ

tan(α +β ) = tanα+tanβ

1−tanα tanβ
tan(α−β ) = tanα−tanβ

1+tanα tanβ

I Based upon cos(α − β ) = cosα cosβ + sinα sinβ , we have less difficulties
in proving the five remaining Sum Identities

cos(α +β ) = cos(α− (−β ))

= cosα cos(−β )+ sinα sin(−β )

= cosα cosβ − sinα sinβ (opposite angles)

sin(α−β ) = cos(90◦− (α−β )) (complementary angles)
= cos((90◦−α)+β )

= cos(90◦−α)cosβ − sin(90◦−α)sinβ

= sinα cosβ − cosα sinβ (complementary angles)

sin(α +β ) = sin(α− (−β ))

= sinα cos(−β )− cosα sin(−β )

= sinα cosβ + cosα sinβ (opposite angles)

tan(α±β ) =
sin(α±β )

cos(α±β )

=
sinα cosβ ± cosα sinβ

cosα cosβ ∓ sinα sinβ

=

sinα cosβ

cosα cosβ
± cosα sinβ

cosα cosβ

cosα cosβ

cosα cosβ
∓ sinα sinβ

cosα cosβ

=
tanα± tanβ

1∓ tanα tanβ
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16. View Transformation
MISSING PICTURES

L(404,242)

C
0 200 400 600 800 1000

x'0

200

400

600

800

1000
y'

Figure 16.4: The game window
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L(202,121)

C
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Figure 16.5: Zooming-out view transformation
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L(808,484)
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Figure 16.6: Zooming-in view transformation
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EXERCISES

Exercise 151 Construct an arrow spanning edges between vertices, in their order
{(0, 20),(20, 0),(10, 0),(10, −20),(−10, −20), (-10, 0),(−20, 0),(0, 20)}. We
modelled this arrow around the origin O which we adopt as its pivot point.

1) Positioning this arrow in the world space implies we need to construct its
embedding transformation E. First scale it to 1

10 of its original size, then
rotate it by an angle of +170◦ around its pivot and finally position this
instanced arrow with its pivot put in point (17, 19). Calculate and visualise
the according arrow image positioned in the world space in GeoGebra.

2) Return the camera captured arrow from world space to the fixed game win-
dow, which is requiring a view transformation. Establish the view transfor-
mation corresponding to a camera with its lower left pivot point in (12, 14),
rotated by an angle of 30◦ around this pivot and uniformly scaled by factor

1
1.13 with a camera window in pixels of 15 width and 15 height.

3) Stack the former view transformation on top of the latter embedding trans-
formation E, to matrix multiply these into one action matrix. Now calculate
and visualise the subsequent arrow image as brought into the game window
in GeoGebra.

Exercise 152 The Belgian UFO wave was a series of sightings of triangular UFOs
over Belgium which lasted from November 1989 until April 1990. At a certain
time, the pivot point P of such a triangular UFO was located in (299,99) when its
nose point N was in (300,100). The military camera window measured 15 width
by 10 height with the bottom left vertex C of the camera’s rectangle situated in
(298, 97) on the UFO’s right wing tip as portrayed. This isosceles UFO is only
principally portrayed, meaning its orientation and proportions may differ from this
picture. The picture is solely provided for a better understanding of the above listed
points P, N and C.

N

C

P
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1) Given these conditions, answer the matrix product as such to deliver the view
transformation which brings this UFO horizontally (meaning

−→
PN horizon-

tally) into our game window.

2) Compute the former matrix product using GeoGebra to answer the UFO view
transformation matrix.

3) Also append a window-filling scaling for a ground based view port of 60 width
by 40 height. This scaling is uniform. Recompute the former matrix product
now including the latter scaling using GeoGebra to answer the zoomed UFO
view transformation matrix.
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