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This book is dedicated to Malaika.
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Bruno Deneckere (Someday, June 2006)
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As this chapter offers all the necessary mathematical skills for the full mastery of all
further topics explained in this book, we strongly recommend it. To serve its purpose, the
successive paragraphs below refresh some required aspects of mathematical language as
used on the applied level.

1.1 Algebra

Real numbers
We typeset the set of:

. natural numbers (unsigned integers) as N including zero,

. integer numbers as Z including zero,

. rational numbers as Q including zero,

. real numbers (floats) as R including zero.

All the above make a chain of subsets: N⊂ Z⊂Q⊂ R.

To avoid possible confusion, we outline a brief glossary of mathematical terms. We recall
that using the correct mathematical terms reflects correct mathematical thinking. Putting
down ideas in the correct words is of major importance for profound insight.

Sets

. We recall writing all subsets in between braces, e.g. the empty set appears as {}.

. We define a singleton as any subset containing only one element, e.g. {5} ⊂ N, as
a subset of natural numbers.

. We define a pair as any subset containing just two elements, e.g. {115,−4} ⊂ Z,
as a subset of integers. In programming the boolean values true and false make up
a pair {true, f alse} called the boolean set which we typeset as B.

. We define Z− = {. . . ,−3,−2,−1} whenever we need negative integers only. We
express symbolically that −1234 is an element of Z− by typesetting −1234 ∈ Z−.

. We typeset the set minus operator to delete elements from a set by using a back-
slash, e.g. N\{0} reading all natural numbers except zero, Q\Z meaning all pure
rational numbers after all integer values left out and R \ {0,1} expressing all real
numbers apart from zero and one.
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Calculation basics

operation expression a b c

to add a+b = c term term sum

to subtract a−b = c term term difference

to multiply a ·b = c factor factor product

to divide a
b = c, b 6= 0 numerator divisor quotient

or denominator or fraction

to exponentiate ab = c base exponent power

to take the root b
√

a = c radicand index radical

return factorial n! = c n factorial

We define the factorial of a natural argument as the returned product of this argument
multiplied with all natural numbers from this number n down to 1. Put in symbols:

n! = n · (n−1) · (n−2) · . . . ·3 ·2 ·1 restricted to n ∈ N

Furthermore we define 1! = 1 and as well 0! = 1.

Examples:

2! = 2 ·1 = 2, 3! = 3 ·2 ·1 = 6, 4! = 4 ·3 ·2 ·1 = 24.

We write the opposite of a real number r as −r, defined by the sum r+(−r) = 0. We
typeset the reciprocal of a nonzero real number r as 1

r or r−1, defined by the product
r · r−1 = 1.

We define subtraction as equivalent to adding the opposite: a−b = a+(−b). We define
division as equivalent to multiplying with the reciprocal: a : b = a ·b−1.

When we mix operations we need to apply priority rules for them. There is a fixed priority
list ‘PEMDAS’ in performing mixed operations in R that can easily be memorised by
‘Please Excuse My Dear Aunt Sally’.

. First process all that is delimited in between Parentheses,

. then Exponentiate,

. then Multiply and Divide from left to right,

. finally Add and Subtract from left to right.
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Now we discuss the distributive law ruling
within R, which we define as threading a ‘su-
perior’ operation over an ‘inferior’ operation.
In conclusion, distributing requires two differ-
ent operations.

Hence we distribute exponentiating over multi-
plication as in (a ·b)3 = a3 ·b3. Likewise rules
multiplying over addition as in 3 · (a+b) =
3 ·a+3 ·b.

However we should never stumble on this
‘Staircase of Distributivity’ by going too fast:

(a+b)3 6= a3 +b3,

√
a+b 6=

√
a+
√

b,√
x2 + y2 6= x+ y.

Fractions
A fraction is what we call any rational number written as t

n given t,n ∈ Z and n 6= 0,
wherein t is called the numerator and n the denominator. We define the reciprocal of a

nonzero fraction t
n as 1

t
n
= n

t or as the power
(

t
n

)−1
. We define the opposite fraction as

− t
n = −t

n = t
−n . We summarise fractional arithmetic:

sum t
n +

a
b = t·b+n·a

n·b

difference t
n −

a
b = t·b−n·a

n·b

product t
n ·

a
b = t·a

n·b

division
t
n
a
b
= t

n ·
b
a

exponentiation
( t

n

)m
= tm

nm

singular fractions 1
0 =±∞ infinity (see page 76)
0
0 =? indeterminate

Powers
We define a power as any real number written as gm, wherein g is called its base and m
its exponent. The opposite of gm is simply−gm. The reciprocal of gm is 1

gm = g−m, given
g 6= 0.



ARITHMETIC REFRESHER 21

According to the exponent type we distinguish between:

g3 = g ·g ·g 3 ∈ N,

g−3 = 1
g3 = 1

g·g·g −3 ∈ Z,

g
1
3 = 3
√

g = w⇔ w3 = g 1
3 ∈Q,

g0 = 1 g 6= 0.

Whilst calculating powers we may have to:

multiply g3 ·g2 = g3+2 = g5,

divide g3

g2 = g3 ·g−2 = g3−2 = g1,

exponentiate
(
g3
)2

= g3·2 = g6 them.

We insist on avoiding typesetting radicals like 7
√

g3 and strongly recommend their con-
temporary notation using radicand g and exponent 3

7 , consequently exponentiating g to

g
3
7 . We recall the fact that all square roots are non-negative numbers,

√
a = a

1
2 ∈ R+ for

a ∈ R+.

As well as knowing the above exponent types, understanding the above rules to calcu-
late them is necessary for using powers successfully. We advise memorising the integer
squares running from 12 = 1, 22 = 4, . . ., up to 152 = 225, 162 = 256 and the integer cubes
running from 13 = 1, 23 = 8, . . ., up to 73 = 343, 83 = 512 in order to easily recognise
them.

Recall that the only way out of any power is exponentiating with its reciprocal exponent.
For this purpose we need to exponentiate both left hand side and right hand side of any
given relation (see also paragraph 1.2).

Example: Find x when 7√x3 = 5 by exponentiating this power.

x
3
7 = 5⇐⇒

(
x

3
7

) 7
3
= (5)

7
3 ⇐⇒ x≈ 42.7494.

We emphasise the above strategy as the only successful one to free base x from its expo-
nent, yielding its correct expression numerically approximated if we wish to.

Example: Find x when x2 = 5 by exponentiating this power.

x2 = 5⇐⇒
(
x2) 1

2 = (5)
1
2 or − (5)

1
2 ⇐⇒ x≈ 2.23607 or−2.23607.

We recall the above double solution whenever we free base x from an even exponent,
yielding their correct expression as accurately as we wish to.
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Mathematical expressions
Composed mathematical expressions can often seem intimidating or cause confusion.
To gain transparency in them, we firstly recall indexed variables which we define as
subscripted to count them: x1,x2,x3,x4, . . . ,x99999,x100000, . . ., and α0,α1,α2,α3,α4, . . . .
It is common practice in industrial research to use thousands of variables, so just picking
unindexed characters would be insufficient. Taking our own alphabet as an example, it
would only provide us with 26 characters.

We define finite expressions as composed of (math-
ematical) operations on objects (numbers, variables
or structures). We can for instance analyse the ex-
pression (3a+ x)4 by drawing its tree form. This
example reveals a Power having exponent 4 and a
subexpression in its base. The base itself yields a
sum of the variable x Plus another subexpression.
This final subexpression shows the product 3 Times
a.

Let us also evaluate this expression (3a+ x)4. Say
a = 1, then we see our expression partly collapse
to (3+ x)4. If, on top of this, we assign x = 2, our
expression then finally turns to the numerical value
(3+2)4 = 54 = 625.

When we expand this power to its pure sum expression 81a4 + 108a3x + 54a2x2 +

12ax3 + x4, we did nothing but reshape its pure product expression (3a+ x)4.

We warn that trying to solve this expression – which is not a relation – is completely in
vain. Recall that inequalities, equations and systems of equations or inequalities are the
only objects in the universe we can (try to) solve mathematically.

Relational operators
We also refresh the use of correct terms for inequalities and equations.

We define an inequality as any variable expression comparing a left hand side to a right
hand side by applying the ‘is-(strictly)-less-than’ or by applying the ‘is-(strictly)-greater-
than’ operator. For example, we can read (3a+ x)4 6 (b+4)(x+3) containing variables
a, x, b. Consequently we may solve such inequality for any of the unknown quantities a,x
or b.

We define an equation as any variable expression comparing a left hand side to a right
hand side by applying the ‘is-equal-to’ operator. For example (3a+ x)4 = (b+4)(x+3)
is an equation containing variables a, x, b. Consequently we also may solve equations for
any of the unknown quantities a,x or b.


